
RWTH Aachen
Lehrstuhl für Informatik IX
Lehr- und Forschungsgebiet
Computerunterstütztes Lernen und Wissensstrukturierung
Prof. Dr. U. Schroeder

Einführung in die Programmierung in JAVA

Ein Leitprogramm in Informatik

Gymnasien und Gesamtschulen, Oberstufe

Stufe 11

Autorin Christina Roeckerath
Betreuer Prof. Dr. U. Schroeder

Fassung vom 11.01.2012

 2

 3

Einführung

Du wirst in den nächsten Wochen das Ziel verfolgen, die ersten Schritte des
Programmierens zu lernen. Programmieren bedeutet, dass man einen Text in einer
speziellen Sprache verfasst, mit deren Hilfe man dem Computer Anweisungen erteilen
kann, die er ausführen muss. Diese spezielle Sprache nennt man
Programmiersprache.

Die erste Programmiersprache, die wir lernen werden, wird Java sein. Java ist eine
moderne Programmiersprache, die in der Arbeitswelt, im Internet und an Universitäten
viel genutzt wird. Mit der Programmiersprache Java kann man nicht nur kleine
Programme schreiben, sondern auch komplexe Software konstruieren. Nutzt du den
Computer regelmäßig? Wenn das der Fall ist, dann hast du sicherlich auch schon oft,
ohne es zu merken, Software genutzt, die in Java geschrieben war.

Dieses Leitprogramm wird dir nicht nur zu den ersten Schritten des Programmierens
in Java verhelfen. Nach dem Durcharbeiten wirst du dazu in der Lage sein, eine
Vielzahl an Programmiersprachen zu verstehen und mit ein bisschen Übung, auch
selbst zu benutzen

Arbeite dieses Leitprogramm sorgfältig durch! Für das Programmieren ist es
beispielsweise wichtig, dass du immer erst weiterarbeitest, wenn dein Programm
auch wirklich funktioniert. Wenn du das Leitprogramm gemeistert hast, wirst du dein
Ziel erreichen. Im Laufe der nächsten Kapitel lernst du Schritt für Schritt alle wichtigen
Grundlagen der Programmierung in Java kennen.

Viel Erfolg!

 4

 5

Inhaltsverzeichnis

Arbeitsanleitung .. 6

Kapitel 1 Erste Schritte ... 7

Musterlösungen zu den Aufgaben aus Kapitel 1 .. 14

Kapitel 2 Programmaufbau ... 17

Musterlösungen zu den Aufgaben aus Kapitel 2 .. 23

Kapitel 3 Datentypen und Operationen .. 25

Musterlösungen zu den Aufgaben aus Kapitel 3 .. 34

Kapitel 4 Variablen ... 37

Musterlösungen zu den Aufgaben aus Kapitel 4 .. 45

Kapitel 5 Verzweigungen ... 49

Musterlösungen zu den Aufgaben aus Kapitel 5 .. 56

Kapitel 6 Schleifen ... 61

Musterlösungen zu den Aufgaben aus Kapitel 6 .. 67

Kapitel 7 Arrays ... 73

Musterlösungen zu den Aufgaben aus Kapitel 7 .. 83

Anhang A: Kapiteltests .. 95

A.1 Kapiteltests für den Tutor zu Kapitel 1 ... 95
Musterlösung .. 96

A.2 Kapiteltests für den Tutor zu Kapitel 2 ... 97
Musterlösung .. 99

A.3 Kapiteltests für den Tutor zu Kapitel 3 ... 100
Musterlösung .. 102

A.4 Kapiteltests für den Tutor zu Kapitel 4 ... 104
Musterlösung .. 106

A.5 Kapiteltests für den Tutor zu Kapitel 5 ... 108
Musterlösung .. 111

A.6 Kapiteltests für den Tutor zu Kapitel 6 ... 113
Musterlösung .. 116

A.7 Kapiteltests für den Tutor zu Kapitel 7 ... 118
Musterlösung .. 119

Anhang B: Mediothek ... 122

Anhang C: Material ... 122

Anhang D: Literaturangabe .. 122

 6

Arbeitsanleitung

Das vorliegende Leitprogramm ist für das selbständige Durcharbeiten gedacht. Die
Kapitel bestehen aus unterschiedlichen Teilen, die du an den folgenden Symbolen
erkennen kannst:

Lernziel

Was werde ich nach dem Bearbeiten des Kapitels können?

Theorie

Lies dir diesen Teil sorgfältig durch. Hier lernst du alles, was du für
die praktischen Aufgaben und für die Tests brauchst.

Übungsaufgaben am Computer

Führe diese Aufgaben am Computer aus. Arbeite erst weiter,
wenn dein Programm läuft. Du darfst diese Aufgaben alleine oder
mit einem Partner bearbeiten.

Übungsaufgaben im Heft

Bearbeite die Übungsaufgaben und vergleiche sie anschließend
mit den Musterlösungen. Soweit nicht anders angegeben
bearbeitest du diese Aufgaben alleine.

Sicherungsphase

Hier soll das Gelernte gesichert werden. Dieser Teil hilft dir beim
Einprägen der gelernten Themen!

Lernkontrolle

Jetzt kannst du prüfen ob du die Inhalte des letzten Kapitels
verstanden hast. Entscheide selbst, wann du dich fit fühlst für
diesen Test. Nur wenn du diesen Test erfolgreich meisterst, darfst
du das nächste Kapitel oder das Additum in Angriff nehmen.

+
Additum

Diesen Teil bearbeiten nur die schnellen Schüler. Nach der Lern-
kontrolle für das Kapitel, erfährst du vom Lehrer, ob du
dazugehörst. Diese Aufgaben sind extra anspruchsvoller. Sie
können auch unbekannten Stoff behandeln.

 7

Kapitel 1 Erste Schritte

Übersicht

In diesem Kapitel wird erklärt, wie ein Programm entsteht. Du wirst
lernen, wie man aus einem Text ein Programm machen kann.
Du wirst in diesem Kapitel noch nicht lernen, selbst ein Programm zu
schreiben. Zunächst geht es nur darum aus einem vorgegebenen Text
ein Programm zu machen, was man auf dem Computer laufen lassen
kann.

Lernziel

Nachdem du dieses Kapitel durchgearbeitet hast, kannst du einen
vorgegebenen (Programm-) Text in ein Programm umwandeln und
dieses Programm am Computer starten.

Aufgabe1 - Übungsaufgaben am Computer -

Wir kommen direkt zur Sache. Führe die nächsten Arbeitaufträge aus!
Wenn du unsicher bist, was mit einigen der Anweisungen gemeint sein
könnte, dann hilft dir die Abbildung 1 vielleicht weiter.

- Suche dir einen freien Rechner!
- Logge dich mit deinem Benutzernamen und Passwort ein!
- Starte das Programm JavaEditor! Du findest das JavaEditor-Icon

auf dem Desktop. Jetzt siehst du das in Abbildung 1 dargestellte
Fenster.

- Öffne ein neues Dokument! (Datei -> Neu)
- Gebe folgenden Javaprogrammcode ein!

public class Mein_erstes_Programm {

 public static void main (String [] arguments){
 System.out.print("Hallo Welt");
 }

}

- Speichere das Programm unter dem Namen:

Mein_erstes_Programm.java

- Klicke auf das Symbol ! Jetzt hast du das Programm vom
Computer compilieren lassen. Was das bedeutet, klären wir im
Theorieteil.

- Wenn du bis hierhin alles richtig gemacht hast, dann steht im
unteren Feld:

 8

- Wenn dieses nicht der Fall ist, dann taucht in dem Feld der Begriff

„error“ (also Fehler) auf. Das bedeutet, dass du irgendeinen Teil
des Textes nicht richtig übertragen hast. Das kann schnell
passieren. Versuche, den Fehler zu finden und compiliere dann
noch mal! Wenn du den Fehler gar nicht finden kannst, dann bitte
einen Mitschüler oder eine Mitschülerin um Hilfe.

- Klicke auf das grüne Dreieck ! Es geht ein schwarzes Fenster
auf. In dem Fenster steht (unter anderem):

 Hallo Welt!
Du hast das Programm ausgeführt. Was das bedeutet, klären wir
auch im Theorieteil.

Theorie

Was hast du in der Aufgabe oben gemacht?

Du hast, vielleicht das erste Mal, ein Programm geschrieben. Dazu hast
du einen vorgegebenen Text, den Quelltext deines Programms, mit Hilfe
des JavaEditors geschrieben und gespeichert. Diesen Teil des
Programmierens nennt man editieren. Deshalb nennt man Programme,

Compilieren ! Javaprogramm ausführen!
Javaquellcode
speichern !

Schreibe hier den
Javaquelltext hin!

Abbildung 1 - JavaEditor

 9

mit denen man Quellcodes schreiben und speichern kann auch
Editoren.

Im nächsten Schritt hast du das Programm compiliert. Weißt du
eigentlich was das bedeutet? Ein Computer versteht zunächst einmal nur
sehr einfache und sehr wenige Anweisungen. Wenn man mit diesen
wenigen Anweisungen ein größeres Programm schreiben müsste,
bräuchte man sehr lange und der Quelltext würde sehr unübersichtlich
werden. Aus diesem Grund hat man höhere Programmiersprachen
entwickelt, die viel mehr Anweisungen bieten. Der Quelltext, den du
geschrieben hast, ist in der höheren Programmiersprache JAVA
geschrieben. Mit höheren Programmiersprachen ist das Programmieren
leichter und weniger aufwändig. JAVA ist die Programmiersprache, die
wir in den nächsten Wochen lernen wollen.

Wie erfährt der Computer nun, welche der ihm bekannten, einfachen
Anweisungen ausgeführt werden müssen, wenn er einen Befehl in einer
höheren Programmiersprache erhält? Für diese Aufgabe gibt es
Compiler. Sie übersetzen einen Quelltext, der in einer höheren
Programmiersprache geschrieben ist, so, dass der Computer ihn
versteht.

Nach dem Compilieren weiß der Computer also, was er tun soll. Dein
nächster Schritt war in der obigen Aufgabe das Ausführen des
Programms. Es öffnete sich ein schwarzes Fenster in dem „Hallo Welt“
stand. Dieses schwarze Fenster nennt man Eingabeaufforderung. Ein
Programm ausführen bedeutet also, dass der Computer die
Anweisungen befolgt, die im Quelltext des Programms formuliert sind. Du
kannst dein Programm jetzt beliebig oft vom Computer ausführen lassen.

Eine Software, mit der man Quellcodes nicht nur editieren und speichern
sondern auch compilieren und ausführen kann, heißt
Entwicklungsumgebung. JavaEditor ist die Entwicklungsumgebung, mit
der wir in Zukunft arbeiten wollen.

Aufgabe 2 - Übungsaufgabe im Heft und Sicherungsphase

Finde einen Mitschüler und oder eine Mitschülerin, der/die auch gerade
bei der Aufgabe 2 angekommen ist!

(a) Diskutiert die Bedeutung der fettgedruckten Begriffe im
Theorieteil!

(b) Fragt euch gegenseitig die Begriffe ab! Dabei darf der Befragte
natür-lich nicht im Theorieteil nachsehen. Der Abfragende sollte
dagegen genau nachsehen, ob der Befragte die richtigen
Antworten gibt.

 10

Aufgabe 3 - Übungsaufgabe im Heft und Sicherungsphase

Siehe dir die Punkte an, die in der Abbildung durch die Pfeile bezeichnet
sind. Beantworte folgende Fragen zu den einzelnen Punkten.

1 (a) Zu welchem Programm gehört dieses Fenster?

(b)

Wie nennt man solche Programme?

(c)

Was kann man mit ihnen machen?

2 (a)

Was schreibt man hier hinein?

(b)

Wie nennt man das Schreiben davon?

1 3 4

2

 11

3 (a) Wie nennt man das, was der Computer macht, wenn du
diesen Knopf drückst?

(b)

Was bedeutet das?

(c)

Warum schreibt man ein Quellprogramm nicht so, dass der
Computer es direkt verstehen kann?

4 (a)

Wie nennt man das, was der Computer macht, wenn du
diesen Knopf drückst?

(b)

Was bedeutet das?

Vergleiche deine Lösungen mit den Musterlösungen am Ende des
Kapitels!

Theorie

Bis hierhin haben wir erstmal nur gelernt, wie man ein vorgegebenes
Programm editiert, compiliert und ausführt.
Aber was macht das Programm Mein_erstes_Programm.java ?

 12

Nun wollen wir uns mit der Bedeutung, der sogenannten Semantik, des
Quelltext befassen:

public class Mein_erstes_Programm {

 public static void main (String [] arguments){
 System.out.print("Hallo Welt");
 }

}

Die Ausführung diese Programms bewirkt, dass die Textzeile
Hallo Welt
auf dem Bildschirm angezeigt wird. Man nennt das Ausgabe oder
Output.

Aufgabe 4 - Übungsaufgabe am Computer

Welche Zeile des Programms könnte die Ausgabe bewirkt haben?
Versuche das Programm so umzuschreiben, dass es einen anderen Text
als

Hallo Welt
ausgibt!

Lernkontrolle

Fühlst du dich sicher im Stoff? Dann kannst du bei unserem Tutor den
Kapiteltest machen. Wenn du ihn bestehst, darfst du das nächste Kapitel
oder das Additum bearbeiten.

+

Additum

Für diese Aufgabe darfst du dir gerne einen Partner suchen.

In diesem Kapitel hast du gelernt, dass ein Computer zunächst einmal
nur sehr einfache und sehr wenige Anweisungen versteht. Man hat
höhere Programmiersprachen eingeführt, weil man, wenn man mit diesen
wenigen Anweisungen ein größeres Programm schreiben würde, sehr
lange brauchen würde und der Quelltext sehr unübersichtlich werden
würde.

Recherchiere im Internet! Und beantworte die folgenden Fragen!
a) Wie nennt man die Sprache, die der Computer direkt versteht?

 13

b)

Welcher Teil des Computers führt die Befehle in dieser Sprache
 wirklich aus?

c) In welcher Form liegen die Befehle in dieser Sprache vor?

d)

Nenne ein paar Beispiele dafür, was die einzelnen Befehle
bewirken!

e)

Ist es möglich ein Programm direkt in dieser Sprache zu
schreiben?

f)

Wie nennt man die Menge aller Befehle eines Prozessors?

g)

Bei welchen Prozessoren hat man eher viele und bei welchen
eher wenige Befehle?

 14

Musterlösungen zu den Aufgaben aus Kapitel 1

Aufgabe 3

1 (a) JavaEditor
(b) Entwicklungsumgebung
(c) Editieren, Speichern, Compilieren, Ausführen

2 (a) Quellcode des Programms
(b) Editieren

3 (a) Compilieren
(b) Übersetzten eines Quelltextes in einer höheren Programmiersprache in

Anweisungen, die der Computer versteht

(c) Ein Computer versteht nur sehr einfache und sehr wenige Anweisungen.
Wenn man mit diesen wenigen Anweisungen ein größeres Programm
schreiben müsste, bräuchte man sehr lange und der Quelltext würde
sehr unübersichtlich werden

4 (a) Ausführen
(b) Der Computer tut das, was ihm durch den Quelltext aufgetragen wird.

Aufgabe 4
 Die Ausgabe am Bildschirm wird durch die folgende Programmzeile

bewirkt:
System.out.print(“Hallo Welt“);

Ersetzt man
“Hallo Welt“

durch einen anderen Text, z.B.
“Dieses ist mein erstes Programm“,

dann wird dieser Text, beim Ausführen des Programms, am Bildschirm
ausgegeben.

+
a) Maschienensprache, Befehlssatz, Maschinenbefehle

b) Der Prozessor

c) Die Befehle liegen in Binärcode vor. Dh. es sind Folgen von 0en

und 1en.

d)  Arithmetische Operationen: Führen Berechnungen durch
 Speicheroperationen: Übertragen Daten zwischen

Prozessorregistern und Speicher
 Vergleichesoperationen: Vergleich von Werten
 Steueroperationen: Verzweigungen, die den Ablauf des

Programms beeinflussen

e) Dieses ist sehr schwer. Es handelt sich um eine für den Menschen

kaum lesbare Sprache, die allenfalls von Experten mit einem so

 15

genannten Maschinensprachemonitor bearbeitet werden kann.
f) Will man die Menge aller Befehle eines Prozessors beschreiben, so

wird der Begriff Befehlssatz bevorzugt
g) Relativ große Befehlssätze findet man in CISC-Prozessoren,

möglichst kleine Befehlssätze werden in RISC-Prozessoren
angestrebt.

 16

 17

Kapitel 2 Programmaufbau

Übersicht

Das Programm Mein_erstes_Programm.java aus Kapitel 1 hatte einen
sehr einfachen Quelltext. Bevor man kompliziertere Java-Quelltexte
verstehen bzw. selber schreiben kann, muss man wissen, wie sie
grundsätzlich aufgebaut sind. Sie bestehen aus einer Vielzahl von
Komponenten, wovon einige immer vorkommen müssen und einige nicht.
Wir wollen uns die einzelnen Komponenten ansehen und ihre Bedeutung
kennenlernen.

Lernziel

In diesem Kapitel wirst du lernen, wie Java Quelltexte aufgebaut sind. Du
lernst also welche Bestandteile zu einem Javaprogramm gehören und
welche Funktion sie haben?

Theorie

Anhand des Programms Kreisumfang soll der grundsätzliche Aufbau von
Javaprogramen veranschaulicht werden. Es ist nicht nötig, dass du
dieses Programm verstehst.

Dateiname: Kreisumfang.java

Deklarationen

A
nw

ei
su

ng
en

M
et

ho
de

n

public class Kreisumfang {

 //Ausgabe der Ueberschrift
 static void ueberschrift(){
 System.out.println("\n KREISUMFANG \n");
 }

 //Berechnung des Umfangs
 static double umfang(double r){
 return r * 2.0 * 3.14159;
 }

 public static void main (String[] arg) {

 double r;
 double u;

 ueberschrift();

 System.out.println(" r | Kreisumfang ");
 for (r=1; r<=9; r++){

 u = umfang(r);

 System.out.print(" ");
 System.out.print(r);
 System.out.print(" | ");
 System.out.println(u);
 }
 }

}

H
au

pt
pr

o
gr

am
m

Kommentare

Methoden-
aufruf

 18

public class Kreisumfang {…}
Der Name der Klasse muss gleich dem Namen der Datei sein, in der der
Quelltext gespeichert ist. Deshalb ist dieses Programm in der Datei
Kreisumfang.java gespeichert. In den geschweiften Klammern steht das
gesamte Programm.

public static void main (String[] arg) {...}
Ein Programm hat ein Hauptprogramm. Es heißt immer main. Bei der
Ausführung des Programms beginnt der Rechner beim Hauptprogramm.
Der Quellcode des Hauptprogramms wird in die geschweiften Klammern
geschrieben.

 double r;
 double u;
Die zu verarbeitenden Daten eines Programms werden in dafür
vorgesehnen Behältern, so genannten Variablen, gespeichert. Hier
haben wir die Variablen r und u, die beide Dezimalzahlen (double)
speichern können. Wird im Quelltext eine Variable benutzt, so steht sie
für den in ihr gespeicherten Wert. Durch die Deklaration gibt man dem
Computer an, welche Variablen genutzt werden sollen und welche Art
von Werten in den Variablen gespeichert werden soll.

Nach den Deklarationen folgen die Anweisungen. Sie sagen dem
Computer, was er tun soll. Jede Deklaration und jede Anweisung wird
durch ein Semikolon abgeschlossen.

 //Ausgabe der Ueberschrift
Kommentare geben Erläuterungen zum Programm. Sie beginnen mit //
und gehen bis zum Zeilenende. Bei der Compilierung und Ausführung
werden Sie vom Computer ignoriert. Sie dienen der besseren Lesbarkeit
des Programms für den Programmierer oder andere Personen, die sich
den Quelltext ansehen.
Sie haben allerdings keinerlei Einfluss auf das Programm.

 static void ueberschrift(){
 System.out.println("\n KREISUMFANG \n");
 }
Um den Quelltext besser strukturieren zu können, können Teile von ihm
in sogenannten Methoden ausgelagert werden. Mit Hilfe von Methoden
kann häufig genutzter Code mehrfach verwendet werden.

 ueberschrift();
Das Ausführen des in einer Methode ausgelagerten Quellcodes, wird
durch einen Methodenaufruf angestoßen.

 19

Aufgabe 1 - Programmaufbau

public class Rechnung {

 //Ausgabe der Ueberschrift
 static void ueberschrift(){
 System.out.println("\n Irgendeine Rechnung \n");
 }
 // Dieses Programm gibt das Ergebnis von x+y aus
 public static void main (String[] arg) {
 int x;
 int y;

 ueberschrift();

 x = 100 + 4 * 3 / 4;
 y = 12345;

 System.out.println(x + y);
 }

}

Wenn du den Theorieteil gut verstanden hast, kannst du versuchen, diese
Aufgabe zu lösen. Versuche dabei, so wenig wie möglich im Theorieteil
nachzusehen.

a) Beschrifte das Programm wie oben mit den folgenden Begriffen:

Kommentare , Hauptprogramm, Anweisungen, Methode,
Methodenaufruf, Deklarationen

b) Was sind hier die Variablen?

c) Unter welchem Namen muss das Programm gespeichert werden?

d) Wie heißt das Hauptprogramm ?

e) Wo steht der Quellcode des Hauptprogramms ?

f) Wird die Variable y im Hauptprogramm oder in der Methode deklariert?

 20

g) Was macht der Computer beim Compilieren und Ausführen mit den
Kommentaren?

h) Was darf bei Anweisungen und Deklarationen nie fehlen?

i) Womit beginnen Kommentare?

j) Wozu dienen Methoden ?

k) Wie kann man den Quelltext einer Methode ausführen?

l) Wozu braucht man Variablen?

m) Wozu braucht man Deklarationen?

n) Wozu braucht man Anweisungen?

Lernkontrolle

Bevor du die Lernkontrolle machst, solltest du die fettgedruckten Begriffe
aus dem Theorieteil kennen und verstanden haben. Du solltest auch den
Aufbau eines Java-Programms kennen. Wenn das der Fall ist, dann
kannst du bei unserem Tutor den Kapiteltest machen. Wenn du ihn
bestehst, darfst du das nächste Kapitel oder das Additum bearbeiten.

+

Additum

Diese Aufgabe kannst du mit einem Partner bearbeiten.

In diesem Kapitel kamen zwei Programme vor
Rechnung.java und Kreisumfang.java

Wir haben uns ausschließlich mit dem Aufbau und den Komponenten

 21

dieser Programme befasst. Hast du auch eine Vorstellung davon, was die
Programme machen? TIPP: Die Anweisungen eines Programms werden
immer der Reihe nach durchgegangen.

Betrachte den Quelltext von Rechnung.java !

public class Rechnung {

 //Ausgabe der Ueberschrift
 static void ueberschrift(){
 System.out.println("\n Irgendeine Rechnung \n");
 }
 // Dieses Programm gibt das Ergebnis von x+y aus
 public static void main (String[] arg) {
 int x;
 int y;

 ueberschrift();

 x = 100 + 4 * 3 / 4;
 y = 12345;

 System.out.println(x + y);
 }

}

Wenn du vor diesem Leitprogramm noch nie programmiert hast, dann ist
es schwer, die folgenden Aufgaben zu beantworten. Es könnte dir
helfen, das Programm auf dem Computer auszuführen! Wie das geht,
hast du in Kapitel 1 gelernt.

a) Was bedeuten die einzelnen Deklarationen und Anweisungen?

b) Was macht das Programm?

 22

c) Schreibe das Programm so um, dass es eine andere Rechnung
durchführt!

Betrachte den Quelltext von Kreisumfang.java !

public class Kreisumfang {

 //Ausgabe der Ueberschrift
 static void ueberschrift(){
 System.out.println("\n KREISUMFANG \n");
 }

 //Berechnung des Umfangs
 static double umfang(double r){
 return r * 2.0 * 3.14159;
 }

 public static void main (String[] arg) {

 double r;
 double u;

 ueberschrift();

 System.out.println(" r | Kreisumfang ");
 for (r=1; r<=9; r++){

 u = umfang(r);

 System.out.print(" ");
 System.out.print(r);
 System.out.print(" | ");
 System.out.println(u);
 }
 }

}
d) Was macht das Programm?

e) Schreibe das Programm so um, dass es die Kreisfläche zu einem
Radius bestimmt. Wenn du die Formel dazu nicht mehr auswendig
kannst, dann besorg sie dir. (-:

 23

Musterlösungen zu den Aufgaben aus Kapitel 2

Aufgabe 1

a) public class Rechnung {

 //Ausgabe der Ueberschrift
 static void ueberschrift(){
 System.out.println("\n Irgendeine Rechnung \n");
 }

 // Dieses Programm gibt das Ergebnis von x+y aus
 public static void main (String[] arg) {
 int x;
 int y;

 ueberschrift();

 x = 100 + 4 * 3 / 4;
 y = 12345;

 System.out.println(x + y);
 }

}

b) x, y
c) Rechnung.java
d) main
e) Das Hauptprogramm steht bei

public static void main (String[] arg) {…}
zwischen den geschweiften Klammern.

f) Die Variable y wird im Hauptprogramm deklariert.
g) Beim Compilieren und Ausführen werden die Kommentare vom

Rechner ignoriert.
h) Nach Anweisungen und Deklarationen steht immer ein Semikolon (;).
i) Ein Kommentar beginnt mit //
j) Methoden dienen der Strukturierung des Quelltextes. Häufig

verwendeter Quellcode muss nur einmal geschrieben werden.
k)

Der Quelltext einer Methode kann durch einen Methodenaufruf
ausführen.

l) Variablen braucht man um Werte bzw. Daten zu speichern. Durch den
Namen der Variable erhält man den gespeicherten Wert .

m) Durch Deklarationen gibt man dem Computer an, welche Variablen
genutzt werden sollen und welche Art von Werten in den Variablen
gespeichert werden soll.

n) Die Anweisungen sagen dem Computer, was er tun soll.

+

a+b)
int x;
int y;
Deklaration von den Variablen x und y, zum Speichern von
ganzzahligen Werten. Die gespeicherten Werte können mit x und y
angesprochen werden.

Methode

Haupt-
programm

Deklarationen

Anweisungen

Methodenaufruf

 24

ueberschrift();
Die Methode ueberschrift wird aufgerufen und ihr Quelltext dadurch
ausgeführt. Das bewirkt, dass die Zeile „Irgendeine Rechnung“ am
Bildschirm ausgegeben wird.

 x = 100 + 4 * 3 / 4;
y = 12345;
 Die Ergebnisse der Rechnungen werden in x und y gespeichert.

System.out.println(x + y);
Das Ergebniss von x+y wird am Bildschirm ausgeben.

d)
double r;
double u;
Deklaration von Variablen für Dezimalzahlen.

ueberschrift();

Aufruf der Methode ueberschrift(), die eine Überschrift am Bildschirm
ausgibt

 for (r=1; r<=9; r++){...}
Die Anweisungen in den geschweiften Klammern werden solange
ausgeführt, bis r < oder = 9 ist. r ist beim ersten Durchgang = r und wird
dann pro Durchgang um eins erhöht.

u = umfang(r);
Die Methode umfang() wird aufgerufen und das was die Methode
berechnet wird in u gespeichert.

static double umfang(double r){
 return r * 2.0 * 3.14159;
 }
Das Ergebnis von r*2.0*3.14159 wird berechnet und zurückgegeben, so
dass es in u gespeichert werden kann.

 System.out.print(" ");
 System.out.print(r);
 System.out.print(" | ");
 System.out.println(u);
Ausgabe von r und u und einigen Zeichen.

Das Programm berechnet also den Kreisumfang u für Radien r von 1
bis 9 und gibt ihn jeweils am Bildschirm aus.

 25

Kapitel 3 Datentypen und Operationen

Übersicht Wir haben schon gelernt, dass der Rechner Daten von unterschiedlichen

Typen verarbeiten kann. Wie funktioniert nun die Verarbeitung? Was
kann man also mit diesen Daten machen? Man kann mit Ihnen operieren.
Beispiele dafür sind die Grundrechenarten. Wenn man nun eine
Operation auf Daten bestimmter Datentypen ausführt, von welchem
Datentyp ist das Ergebnis dann? Das musst du beim Programmieren
wissen, damit du weißt, mit welchem Datentyp die Variable, in die das
Ergebnis gespeichert werden soll, deklariert sein muss.

Lernziel

In diesem Kapitel wirst du lernen, welche einfachen Datentypen es gibt,
welche Operationen man auf ihnen ausführen kann und von welchem
Datentyp die Ergebnisse sind.

Theorie

Ein Computer muss viele Daten verarbeiten können. Du weißt, dass
verschiedene Arten von Daten, sogenannte Datentypen oder einfach nur
Typen, gibt. Ein Computer kennt zum Beispiel unter anderem Zahlen,
Zeichen oder auch Texte.
In den letzten beiden Kapiteln sind wir schon auf Daten und Datentypen
gestoßen. Im Programm Mein_erstes_Programm.java hatten wir mit
Texten zutun.
Die Ausgabe mit

System.out.print()

ist u.a. für Daten vom Datentyp Text (bei Java String) vorgesehen. Um
dem Computer zu signalisieren, dass es sich bei einem Datum um einen
Text handelt, muss er vom Programmierer als Text gekennzeichnet
werden. Dazu setzt man Texte in Anführungszeichen (oben).

“Dieses ist ein Text!“
Die Anführungszeichen signalisieren dem Rechner also, dass es sich um
einen Text handelt. In der Fachsprache bezeichnet man einen so
gekennzeichneten Text als String.

Im letzten Kapitel wurde im Programm Kreisumfang.java mit
Dezimalzahlen gerechnet, um zu einem Radius den Kreisumfang zu
bestimmen. In Java sind das Werte vom Datentyp double.

Welche Datentypen gibt es sonst noch bei Java?
Zunächst wollen wir nur die sogenannten „Einfachen Datentypen“
betrachten.

 26

Einfache Datentypen

Datentyp in Java Beispiele
ganze Zahlen
(Integer)

int 1 -2 0 2
3

42

Gleitkommazahlen,
Dezimalzahlen

double 3.14159 -2.71828

Wahrheitswerte boolean true false
Zeichen (Character) char ’a’ ’3’ ’+’ ’$’ ’.’
Zeichenkette, Text String “Hallo Welt“

“3 ist eine ganze Zahl“

Ganze Zahlen und Dezimalzahlen, sind dir aus der Mathematik bekannt.
Auch bei Java können sie negativ oder positiv sein. Es gibt nur zwei
Wahrheitswerte: wahr (true) oder falsch (false). Zeichen werden in
Apostrophe (’ ’) und Texte in Anführungszeichen (“ “) gesetzt.

Bei Zeichen und Texten muss man beachten, dass zwischen Groß- und
Kleinbuchstaben unterschieden wird. Für einen Recher sind ein
Kleinbuchstabe und sein zugehöriger Großbuchstabe völlig verschiede
Zeichen.

Mit Hilfe von Java kann man Daten verarbeiten. Zum Beispiel kann man
eine einfache Addition zweier ganzer Zahlen durchführen. Die
Berechnung wird durch einen sogenannten Operator bewirkt. In diesem
Fall handelt es sich bei diesem Operator um ein +.
Diese Kombination von Daten eines bestimmten Datentyps mit Hilfe von
Operatoren, nennt man Ausdrücke. Die Daten bezeichnet man dabei als
Operanden. Bei der Auswertung eines Ausdrucks ergibt sich ein Datum,
das wiederum einen Datentyp hat. Dieser ist der Ergebnisdatentyp.
Addiert man beispielsweise zwei Werte vom Datentyp int, so erhält man
wieder einen Wert vom Datentyp int.

Beispiel:

3 und 2 sind Daten vom Datentyp int.
+ ist ein Operator für Daten vom Datentyp int.
3 + 2 ist ein Ausdruck mit den Operanden 3 und 2 und dem
Operator +.
Der Ergebnisdatentyp des Ausdrucks 3 + 2 ist vom
Datentyp int.

Aufgabe 1

Fülle die Lücken aus!

1.

’a’ ist vom Datentyp___________________________________ .

 27

2.

- ist ein ___.

3.

2 <= 3 oder 3 + 4 bezeichnet man als

__.

4.

2 und 3 sind die _____________________________________in
dem Ausdruck 2 + 3.

5.

2 < 3 wird zu __
ausgewertet.

6.

Sind bei dem Ausdruck 3 == 4 (== bedeutet „ist gleich“) die
Datentypen der Operanden und der Ergebnistyp gleich?

__

7.

Sind bei dem Ausdruck 3 + 4 die Datentypen der Operanden und
der Ergebnistyp gleich?

__

8.

+ ist _________________________________ im Ausdruck 3+2.

9.

“a“ ist vom Datentyp ___________________________________.

10.

Haben Dezimalzahlen den Datentyp int?

__.

11.

1

2
ist vom Datentyp_____________________________________

.

 28

Theorie

Was gibt es nun für Operationen? Die meisten Operationen sind Dir
bekannt.

Grundrechenarten

Das sind zunächst einmal die Grundrechenarten (+, - , * , /). Diese kann
man sowohl auf int- als auch auf double-Werte anwenden.
3 + 2
3.2 + 2.1
Die Bedeutung dieser Opreatoren ist bis auf die Division bei int, die
sogenannte ganzzahlige Division, klar.
Bei der ganzzahligen Division, werden einfach die Stellen hinterm
Komma vernachlässigt.
Beispiel:

3/2 wird ausgewertet zu 1
4/7 wird ausgewertet zu 0
2/2 wird ausgewertet zu 1

Die ganzen Zahlen sind eine Teilmenge der natürlichen Zahlen. Deshalb
kann man auch Operationen durchführen, wo einer der beiden
Operanden vom Typ int und der andere vom Typ double ist. Das
Ergebnis ist dann natürlich vom Typ double.
1.2 + 2 wird ausgewertet zu 3.2
Intern formt der Computer den Integerwert zu einem Wert vom Typ
double um und führt dann die Operation durch. Das Umformen zum
passenden Typ nennt man Typkonversion. Sie kommt auch bei anderen
Datentypen vor.

Verkettung

Beim Datentyp String hat der Operator + eine ganz andere Bedeutung.
Es verkettet zwei Strings.
“Hal“ +“lo“ wird ausgewertet zu “Hallo“

Vergleichsoperationen

Um zwei Werte miteinander zu vergleichen gibt es
Vergleichsoperationen.
3 < 2
3 != 4
Das sind die folgenden Operationen:
< kleiner
<= kleiner oder gleich (kleinergleich)
> größer
>= größer oder gleich (größergleich)
== gleich
!= ungleich

Diese Operationen können natürlich auf Zahlen angewendet werden.
Zum Teil lassen sie sich aber auch auf die anderen Datentypen

 29

anwenden. Zum Beispiel können Texte oder Buchstaben auf Gleichheit
überprüft werden. Der Ergebnistyp einer Vergleichoperation ist immer
boolean.

Aufgabe 2

Wie werden die Ausdrücke ausgewertet? Von welchen Datentypen
sind die Ergebnisse?
Klammern haben die gleiche Bedeutung wie in der Mathematik.

 Ergebnis Ergebnis-

datentyp

23.4 + 7

30.4

double

30 - 5

(10 / 3) + 0.5

‘a’ == ‘b’

“text” == “Text”

“Pro” + “gramm”

"ab“ != “cd“

6.6 / 3.3

(10 / 4) == 2

(1/ 3) * 1234567891234

‘Q’ == ‘q’

(“Progr” + “amm”) == “Program”

11 <= (22/2)

 30

11 < (22/2)

(1.0 + 2) == 3.0

Theorie

Boolsche Operationen

Boolsche Operationen werden auf Wahrheitwerte angewand. Es gibt
das logische Und (&&), das logische Oder (||) und das logische Nicht (!).

A && B ist nur dann erfüllt, wenn sowohl A als auch B erfüllt ist.
A || B ist dann erfüllt, wenn A oder B oder beides gilt.
! A ist erfüllt, wenn A nicht gilt.

Wenn dir das nicht verständlich genug ist, dann schau in der Tabelle
nach!
 Ausdruck Auswerung
logisches Und true && true

false && true
true && false
false && false

true
false
false
false

logisches Oder true || true
false || true
true || false
false || false

true
true
true
false

logisches Nicht ! true
! false

false
true

Jetzt hast du alle wichtigen Operationen kennengelernt. Die folgende
Tabelle stellt eine Übersicht davon dar:

Datentyp
Operande
n

Operato
r

Bedeutung Ergebnis-
datentyp

Beispiele

int +
*
-
-
/

==
!=
<
>
<=
>=

Addition
Multiplikation
Subtraktion
Negation
ganzzahlige
Division
gleich
ungleich
kleiner
größer
kleinergleich
größergleich

int
int
int
int
int

boolean
boolean
boolean
boolean
boolean
boolean

3 + 2
3 * 2
3 - 2
-3
3 / 2

3 ==2
3 != 2
3 < 2
3 > 2
3 <= 2
3 >= 2

double +
*
-

Addition
Multiplikation
Subtraktion

double
double
double

3.2 + 2.0
3.2 * 2.0
3.2 – 2.0

 31

-
/
==
!=
<
>
<=
>=

Negation
Division
gleich
ungleich
kleiner
größer
kleinergleich
größergleich

double
double
boolean
boolean
boolean
boolean
boolean
boolean

-3.0
3.2 / 2.0
3.2 == 2.0
3.2 != 2.0
3.2 < 2.0
3.2 > 2.0
3.2 <= 2.0
3.2 >= 2.0

boolean ||
&&
!
==
!=

logisches
Oder
logisches
Und
logisches
Nicht
gleich
ungleich

boolean
boolean
boolean
boolean
boolean

true || false
true && false
! true
true == false
true != false

char ==
!=

gleich
ungleich

boolean
boolean

’a’ == ’b’
’a’ != ’b’

String +
==

Verkettung
gleich

String
boolean

“Te“ + “xt“
“Te“ == “xt“

Du brauchst Die Tabelle jetzt nicht auswendig zu lernen. Nutze sie zum
Nachschauen.

Mit den unteschiedlichen Operatoren können auch komplexere
Ausdrücke erstellt werden:
(2 > 3) && (3 < 9)
Wie in der Mathematik werden die Ausdrücke in den Klammern zuerst
ausgewertet. Daraus ergibt sich für den obigen Audruck
false && true
und das wird zu false ausgewertet.

Aufgabe 3

Welche Ergebnisse haben die Ausdrücke? Von welchen Datentypen
sind die Ergebnisse?

 Ergebnis Ergebnisdatentyp

!((23 + 17) == 40)

((23.0 + 17) != 40.0) && true

(10 / 3) + 3.1

true || (2 > 3)

 32

(!(‘a’ == ‘b’)) II (!(!(2==2)))

(‘a’ == ‘a’) && (2 < 3)

(true && (‘x’ == ’x’)) || false

(“ab“+“cd“) == ”ab cd“

(6.6 / 3.3) == (2 + 0.2)

(10 / 4 == 2) || (‘a’ != ‘b’)

(10 / 3 – 3) * 1234567891234

‘Q’ == ‘q’

!(“Hallo” != “Hallo”)

(!(‚A’ == ‚a’)) == true

Lernkontrolle

Hast verstanden was Datentypen, Operanden, Operatoren und
Ausdrücke sind? Kennst du die Bedeutung der einzelnen Operatoren?
Wenn ja, dann melde dich zum Kapiteltest. Um den Kapiteltest zu
bestehen, musst du in der Lage sein, eine ähnliche Aufgabe wie die
Aufgabe 3 zu lösen.

+

Additum

Betrachte den folgenden Ausdruck: ’A’ + 0

a) Auf welche Datentypen wird hier die Operation + angewandt ?

b)

Schreibe ein Javaprogramm, dass Dir den Wert des Ausdrucks
ausgibt! Was gibt das Programm aus?

 33

c) Versuche herauszubekommen, warum genau dieser Wert
ausgegeben wird! Tipp: ASCII
Grund:

d) Was muss demnach bei ’B’ + 0 ausgegeben werden?

e) Welchen Wert hat der Ausdruck ’A’ + ’B’ ?

f)

Welchen Wert hat der Ausdruck ’1’ + ’2’ ?

 34

Musterlösungen zu den Aufgaben aus Kapitel 3

Aufgabe 1
1. char
2. Operator
3. Ausdrücke
4. Operanden
5. true
6. Nein, die Operanden 3 und 4 sind vom Datentyp int und der

Ergebnistyp ist boolean.
7. Ja, Operanden und Ergebnis sind vom Typ int
8. der Operator
9. “a“ ist vom Datentyp String
10. Nein, Dezimalzahlen haben den Datentyp double.
11.

double (,da
1

2
0.5 ist)

Aufgabe 2
 Ergebnis Ergebnisdatentyp
23.4 + 7 30.4 double
30 – 5 25 int
(10 / 3) + 0.5 3.5 double
‘a’ == ‘b’ false boolean
“text” == “Text” false boolean
“Pro” + “gramm” “Programm“ String
"ab“ != “cd“ true boolean
6.6 / 3.3 2.0 double
10 / 4 == 2 true boolean
1/ 3 * 1234567891234 0 int
‘Q’ == ‘q’ false boolean
(“Progr” + “amm”) ==
“Program”

false boolean

11 <= (22/2) true boolean
11 < (22/2) false boolean
(1.0 + 2) == 3.0 true boolean

Aufgabe 3 Ergebnis Ergebnisdatentyp
!((23 + 17) == 40) false boolean
((23.0 + 17) != 40.0) && true false boolean
10 / 3 + 3.1 6.1 double
true || (2 > 3)

true

boolean

(!(‘a’ == ‘b’)) II (!(!(2==2))) true boolean
(‘a’ == ‘a’) && (2 < 3) true boolean
(true && (‘x’ == ’x’)) || false

true boolean

(“ab“+“cd“) == ”ab cd“ false boolean
(6.6 / 3.3) == (2 + 0.2) true boolean
(10 / 4 == 2) || (‘a’ != ‘b’) true boolean

 35

((10 / 3) – 3) * 1234567891234 0 int
‘Q’ == ‘q’ false boolean
!(“Hallo” != “Hallo”) true boolean
(!(‚A’ == ‚a’)) == true true boolean
!((23 + 17) == 40) false boolean

+ Was sagst du zu einem solchen Ausdruck:

’A’ + 0

a) Auf welche Datentypen wird hier die Operation + angewandt ?

char und int

b)

Schreibe ein Javaprogramm, dass Dir den Wert des Ausdrucks ausgibt!

public class Test {

 public static void main (String [] arguments){
 System.out.print(’A’ + 0);
 }
}

Was gibt das Programm aus?

65

c) Versuche herauszubekommen, warum genau dieser Wert ausgegeben
wird! TIPP: ASCII
Grund:

0 ist vom Typ Integer. Durch die Addition, die für Zahlen vorgesehen ist,
wird das Zeichen ’A’ in eine Zahl umgewandelt und dann werden die
beiden Werte addiert. Jedes Zeichen ist einer Integer-Zahl zugeordnet.
Diese Zuordnung kann man in einer ASCII-Tabelle nachsehen.

d) Was muss demnach bei ’b’ + 0 ausgegeben werden?

66

e) Welchen Wert hat der Ausdruck ’A’ + ’B’ ?

131

f)

Welchen Wert hat der Ausdruck ’1’ + ’2’ ?

99

 36

 37

Kapitel 4 Variablen

Übersicht Du weißt aus den vorherigen Kapiteln schon ungefähr, was Variablen

sind. Jetzt wollen wir uns Variablen noch einmal genauer ansehen. Um
die Eigenschaften von Variablen besser zu veranschaulichen, wollen wir
Ihren Inhalt am Bildschirm ausgeben. Dafür müssen wir uns noch mal
mit der Ausgabe am Bildschirm befassen.
Wir wollen in diesem Kapitel interaktive Programme schreiben. Das
bedeutet, dass die compilierten Programme während der Ausführung
über den Bildsschirm und die Tastatur mit dem Benutzer kommunizieren.
Um ein interaktives Programm schreiben zu können, brauchen wir also
noch die Möglichkeit Eingaben über die Tastatur einzulesen und zu
verarbeiten.

Lernziel

Wir wollen Variablen noch mal genauer unter die Lupe nehmen. Du
lernst, was Variablen sind, wie man sie deklariert und verwendet. Obwohl
das Kapitel Variablen heißt, wirst du auch lernen, welche Möglichkeiten
man hat Ausgaben am Bildschirm zu machen und Eingaben vom
Benutzer über die Tastatur im Programm zu verwenden.

Aufgabe 1 - Vorbereitung

Bevor wir nun mit den Variablen anfangen können, wollen wir einige
Vorbreitungen treffen.

Ausgabe am Bildschirm

Wie du weißt, wollen wir interaktive Programme schreiben. Wie Texte
während der Ausführung des Programms ausgeben werden, wissen wir.

Welche Anweisung verwendet man dafür?

Bitte eintragen!

Außerdem kann man mit
System.out.println("irgendein String")
eine ganze Zeile ausgeben. Das bedeutet, dass der in den Klammern
angegebene String ausgegeben wird und dann in die nächste Zeile
gesprungen wird.

 38

Beispiel:
Programmtext Ausgabe am

Bildschirm
System.out.println("**Einkaufsliste**");
System.out.println("");
System.out.println("3 Liter Milch");
System.out.println("500gr Weintrauben");
System.out.println("5 x Joghurt");
System.out.println("2 x Brot");

Einkaufsliste

3 Liter Milch
500gr Weintrauben
5 x Joghurt
2 x Brot

Schreibt man in einen String

\n
dann bewirkt das bei der Ausgabe des Strings einen Zeilenumbruch an
der Stelle wo \n steht..
Ein

\t
in einem String bewirkt einen Zeilenvorschub, wie, wenn man in einem
Textverarbeitungsprogramm die Tabulatortaste verwendet.

Programmtext Ausgabe
System.out.print("1 \n 2 \n 3 \n 4"); 1

2
3
4

Oft lassen sich Zeichen wie ö, ü, ä und ß nicht mit System.out.print...
ausgeben. Deshalb schreibt man stattdessen in der Regel oe, ue, ae und
ss.
.
Eingabe über die Tastatur

Wie bekommen wir ein Programm nun dazu während der Ausführung
Eingaben über die Tastatur entgegenzunehmen, um sie dann
weiterzuverarbeiten? Das ist nicht so einfach. Woher soll ein Programm
wissen, ob eine Zahl oder ein Zeichen gemeint ist, wenn man die 3 auf
der Tastatur drückt? Wir haben bis jetzt noch nicht das Wissen, um ein
Programm zu schreiben, was das kann. Also holen wir uns Hilfe:

1. Besorge Dir die Datei Kon.java!
2. Lege Sie in den Ordner in dem du deine Javaquelltexte liegen

hast.
3. Compiliere sie!

Wenn du jetzt ein Programm schreibst, und es im gleichen Ordner
ablegst, hast du die Möglichkeit, Eingaben von der Tastatur zu lesen.

Mit den folgenden Methodenaufrufen kannst du einen Wert vom
jeweiligen Datentyp über die Tastatur einlesen lassen:

Kon.readInt();

Einlesen von ganzen Zahlen (int)

Kon.readDouble();

Einlesen von Dezimalzahlen (double)

 39

Kon.readChar();

Einlesen von Zeichen (char)

Kon.readString();

Einlesen von Texten (String)

Dann wollen wir das mal ausprobieren.

1. Schreibe ein Programm, das nach dem Namen des Benutzers
fragt! Die Ausgabe am Bildschirm könnte zum Beispiel so
aussehen:

Tipp: Wenn du nicht genau weißt, wie du das hinbekommen sollst,
dann orientiere dich an dem Progamm
Mein_erstes_Programm.java .

2. Wenn das geklappt hat, dann erweitere dein Programm so,
dass bei der Ausführung ein Wert über die Tastatur
eingelesen wird!

Arbeite erst weiter, wenn dein Programm funktioniert.

Dein Programm liest jetzt bei der Ausführung einen String über die
Tastatur ein. Allerdings wird dieser String noch nicht verarbeitet. Das
Programm ist in dieser Form also relativ sinnlos! Der String muss
weiterverarbeitet werden. Dazu muss er zunächst einmal gespeichert
werden. Wir brauchen also Variablen.

Theorie

Du hast schon nebenbei einiges über Variablen gelernt. Wir wollen Sie
uns jetzt genau ansehen. Variablen sind benannte Behälter für Daten.
Sie können ihren Wert ändern und haben einen Datentyp. Das bedeutet,
dass man in eine Variable nur Werte speichern kann, die den gleichen
Datentyp wie die Variable haben. Man sagt, Wert und Variable müssen
zuweisungskompatibel sein.

3

‘a’

“Text“

1,4

123

x y z merke v
int char String double int

In der Darstellung gibt es die Variablen x,y,z und merke. x ist vom
Datentyp int und enthält den Integerwert 3, y ist vom Datentyp char und
enthält den Wert ’a’ usw..

Jede Variable muss vor ihrer Verwendung deklariert werden. Das hast
du im Laufe der letzten Kapitel sicherlich mitbekommen. Es bedeutet,
dass Namen und Datentyp der Variablen bekannt gemacht werden. Der
Compiler reserviert Speicherplatz für den Wert, der in der Variable
abgelegt werden soll.

Wie heisst du ?

 40

Die Deklaration für die obigen Variablen sieht so aus:
int x;
char y;
String z;
double merke;
int v;

Übrigens : Wenn in einer Deklaration mehrere Variablen von dem selben
Datentyp angelegt werden sollen, dann kann man diese auch alle durch
Komma getrennt hinter die Typangabe schreiben.
Die Deklaration für die obigen Variablen kann also auch so aussehen:
int x, v;
char y;
String z;
double merke;

Mit dem = - Zeichen bewirkt man eine Wertzuweisung. Damit kann man
einen Wert in einer Variablen speichern.

Die Werzuweisungen für die obigen Variablen sehen wie folgt aus:
x = 3;
y = 'a';
z = "Text";
merke = 1,4;
v = 123;

Da Variable und Wert zuweisungskompatibel sein müssen, müssen die
linke und rechte Seite vom = - Zeichen, in der Regel denselben Typ
haben. Zum Beispiel kann man in eine Variable, die für int-Werte
vorgesehen ist, keine Strings speichern.
x = "INDA - Gymnasium"; geht nicht

Nach der Wertzuweisung kann man die Variable anstelle des Werts
benutzen. Man kann zum Beispiel folgendes machen:
x = x+1;
Zunächst wird der Ausdruck x + 1 ausgewertet. Da 3 in x gespeichert ist,
wird x+1 zu 4 ausgewertet. Dann wird der ermittelte Wert der Variablen x
zugewiesen. Also enthält x jetzt den Wert 4.

3

x=x+1;

4

x x
int int

Man kann den Wert der Variablen am Bildschirm ausgeben lassen.
System.out.print(x);

4

Programmzeile Ausgabe am Bildschirm

 41

Außerdem kann man mit Kon.readInt(), Kon.readDouble(),
Kon.readChar(), und Kon.readString() Werte, die über die Tastatur
eingegeben werden, in einer Variablen speichern.

“Text“

z = Kon.readString();

Benutzer gibt den String
“anderer Text“ auf der Tastatur ein

„anderer Text“

z z

String String

Aufgabe 2 - Umgang mit Variablen

Zeichne die, durch die Anweisungen bewirkten Veränderungen, in den
Variablen ein.

Empfehlung: Vergleiche in regelmäßigen Abständen mit der
Musterlösung, da sich ein früh gemachter Fehler auf die ganze Lösung
auswirken kann.

100

true

“Leo“

1.9

7

var1 y z merke var2
int boolean String double int

var1 = 4;
y = (3 == 3);
z = "Lina";
merke = 7.2;

var1 y z merke var2

int boolean String double int

var1 = var2;
y = y && true;
z = "Max & " + z;
var2 = var2 + 11;

var1 y z merke var2

 42

int boolean String double int

merke = merke + var1 + var2;
var2 = var2 * (var1-5);
y = (!y) && (var1 != var2)

var1 y z merke var2

int boolean String double int

var1 = 4;
y = !(var2 == (6*6));
z = Kon.readString(); Eingabe: Lone
merke = merke – 0.2;

var1 y z merke var2

int boolean String double int

var1 = Kon.readInt(); 3; Eingabe: 40
merke = Kon.readDouble(); Eingabe: 40

var1 y z merke var2

int boolean String double int

Aufgabe 3 - Name einlesen und ausgeben
Erweitere dein Programm aus Aufgabe 1, so dass der eingegebene
Name in einer Variablen gespeichert wird und dann am Bildschirm wieder
ausgegeben wird.

Aufgabe 4 – Alter ausrechnen

Schreibe ein Programm, das den Namen, das aktuelle Jahr und das
Geburtsjahr des Benutzers einließt. Dann soll das das Alter des
Benutzers ausgegeben werden. Dazu muss noch in Erfahrung gebracht
werden, ob der Benutzer in diesem Jahr schon Geburtstag hatte.

Der Dialog, der bei der Ausführung des Programms entsteht, könnte zum

 43

Beispiel so aussehen.
Hallo, wie heißt du?
Mia
Welches Jahr haben wir, Mia?
Jahr: 2005
In welchem Jahr bist du geboren?
Jahr: 2001
Hattest du dieses Jahr schon Geburtstag?
Fuer ja gebe 0 fuer nein 1 ein: 0
Dann bist du 4 Jahre alt.

Aufgabe 5 – Spritkostenberechnung

Schreibe ein Programm zur Spritkostenberechnung!
Das Programm liest

- den aktuellen Spritpreis,
- den durchschnittlichen Spritverbrauch des Autos pro 100 km
(Beachte: Oft hört man, dass Herstellerangaben stark untertrieben
sind.)
- und die Anzahl der zu fahrenden Kilometer ein.

Dann gibt das Programm aus wie teuer die Fahrt wird.

Beispiel für die Ausgaben/Eingaben während der Ausführung des
Programms:

****Benzinkostenrechner****
aktueller Spritpreis in Cent: 144
Verbrauch des Autos pro 100 km in Liter:8
Zu fahrende Strecke: 100

Die Fahrt kostet 11.25 Euro.

Was würde es kosten, mit dem Auto deiner Eltern oder eines
anderen Bekannten von Aachen nach

- Madrid
- Istanbul
- Peking
- Köln

zu fahren?

Finde dazu im Internet (oder anders)

- die aktuellen Spritpreise,
- wie viel Liter Benzin das Auto deiner Eltern bzw. des Bekannten

pro 100 km verbraucht und
- die entsprechenden Entfernungen heraus (Luftline ist nicht

realistisch).

Aktueller Spritpreis:

______________ __

 44

Verbrauch des Autos:

__

Entfernung Aachen

- Madrid:___

- Istanbul:__

- Peking:___

- Köln:___

Kosten Aachen

- Madrid:___

- Istanbul:__

- Peking:___

- Köln:___

Lernkontrolle

Du solltest für die Lernkontrolle mit Variablen umgehen können. Das
heißt, du musst sie anlegen und benutzen können. Außerdem solltest du
in der Lage sein ein interaktives Programm zu schreiben. Das äußere
Gerüst von einem Programm wird dir allerdings vorgegeben.

 45

Musterlösungen zu den Aufgaben aus Kapitel 4

Aufgabe 1 Vorbereitung

System.out.print();

public class Name {
 public static void main (String [] arguments){
 String name;

 System.out.print("Wie heisst du? ");
 name = Kon.readString();
 }
}

Aufgabe 2 Umgang mit Variablen

Zeichne die durch die Anweisungen bewirkten Veränderungen in den Variablen
ein.

Empfehlung: Vergleiche in regelmäßigen Abständen mit der Musterlösung, da
sich ein früh gemachter Fehler auf die ganze Lösung auswirken kann.

100

true

“Leo“

1.9

7

var1 y z merke var2
int boolean String double Int

 var1 = 4;
 y = (3 == 3);
 z = "Lina";
 merke = 7.2;

4

true

“Lina“

7.2

7

Var1 y z merke var2
Int boolean String double Int

 var1 = var2;
 y = y && true;
 z = "Max & " + z;
 var2 = var2 + 11;

7

true

"Max & Lina"

7.2

18

var1 y z merke var2
Int boolean String double Int

 46

 merke = merke + var1 + var2;
 var2 = var2 * (var1-5);
 y = (!y) && (var1 != var2)

7

false

“Max & Lina“

32.2

36

var1 y z merke var2
Int boolean String double Int

 var1 = 4;
 y = !(var2 == (6*6));
 z = Kon.readString(); Eingabe: Lone
 merke = merke – 0.2;

4

false

“Lone“

32.0

36

Var1 y z merke var2
Int boolean String double Int

var1 = Kon.readInt() + 3; Eingabe: 40
merke = Kon.readDouble(); Eingabe: 40

43

false

"Lone"

40.0

36

var1 y z merke var2
Int boolean String double Int

Aufgabe 3

Name einlesen und ausgeben

Erweitere dein Programm aus Aufgabe 1, so dass der eingegebene Name in
einer Variablen gespeichert wird und dann am Bildschirm wieder ausgegeben
wird.
public class Name {
 public static void main (String [] arguments){
 String name;

 System.out.print("Wie heisst du? ");
 name = Kon.readString();
 System.out.print("Hallo ");
 System.out.print(name);
 System.out.print("!");

 }
}

 47

Aufgabe 4

Alter ausrechnen

Schreibe ein Programm, das den Namen, das aktuelle Jahr und das
Geburtsjahr des Benutzers einließt. Dann soll das das Alter des Benutzers
ausgegeben werden. Dazu muss noch in Erfahrung gebracht werden, ob der
Benutzer in diesem Jahr schon Geburtstag hatte.

public class Dialog {
 public static void main (String [] arguments){
 String name;
 int jahr;
 int gebjahr;
 int abzug, alter;

 System.out.print("Hallo, wie heisst du? \n");
 name = Kon.readString();
 System.out.print("Welches Jahr haben wir, ");
 System.out.print(name);
 System.out.print("? \n");
 jahr = Kon.readInt();
 System.out.print("In welchem Jahr bist du geboren, ");
 System.out.print(name);
 System.out.print("? \n");
 System.out.print("Geburtsjahr: ");
 gebjahr = Kon.readInt();
 System.out.println("Dieses Jahr schon Geburtstag gehabt?“);
 System.out.print("Fuer ja tippe 0 fuer nein 1 ein: ");
 abzug = Kon.readInt();;
 alter = jahr - gebjahr - abzug;
 System.out.print("Dann bist du ");
 System.out.print(alter);
 System.out.print(" Jahre alt.");
 }
}

 48

Aufgabe 5
Spritkostenberechnung

Schreibe ein Programm zur Spritkostenberechnung!
Das Programm liest

- den aktuellen Spritpreis,
- den durchschnittlichen Spritverbrauch des Autos pro 100 km
- und die Anzahl der zu fahrenden Kilometer ein.

Dann gibt das Programm aus wie teuer die Fahrt wird.

Beispiel: VW Golf FSI mit 102 PS

Aktueller Spritpreis: 1,44 Super

Verbrauch des Autos: ca. 7l (Herstellerangaben Mittel außer- und innerorts) +
1l (Misstrauen)

Kosten Aachen (nicht Luftline)

- Madrid: 198,6 €

- Istanbul: 286,50 €

- Peking: 980,46 €

- Köln: 8,06 €

Programmvorschlag:

public class Spritverbrauch {
 public static void main (String [] arguments){
 double preis, strecke, kosten, verbrauch ;

 System.out.println("*****Spritkostenrechner*******");
 System.out.print("Spritpreis pro Liter in Cent: ");
 preis = Kon.readDouble();
 preis = preis/100;
 System.out.print("Durchschn. Verbrauch in L pro 100 km %: ");
 verbrauch = Kon.readDouble();
 System.out.print("Strecke in km: ");
 strecke = Kon.readDouble();
 kosten = preis * verbrauch/100 * strecke;
 System.out.print("Kosten: ");
 System.out.print(kosten);
 System.out.print(" Euro ");
 }
}

 49

Kapitel 5 Verzweigungen

Übersicht Eine Verzweigung ist eine Kontrollstruktur. Was ist eine Kontrollstruktur?

Du hast gelernt, dass ein Programm Zeile für Zeile abgearbeitet wird. Es
gibt allerdings Anweisungen, die einen Sprung zu einem anderen Teil
des Programms oder die Wiederholung eines Programmteils bewirken.
Diese Anweisungen nennt man Kontrollstrukturen. In diesem Kapitel
werden wir uns mit den Verzweigungen befassen. Verzweigung
bedeutet, dass aus einer Auswahl an Möglichkeiten im Programm
fortzufahren eine ausgewählt wird. Verzeigungen kann man mit if- und
switch-Anweisungen bewirken.

Lernziel
In diesem Kapitel lernst du mit Verzweigungen umzugehen. Du wirst den
Umgang mit der If-Anweisung und der Switch-Anweisung kennenlernen.
Außerdem wirst du lernen, deine Programme durch Kommentare und
Einrückungen übersichtlich zu gestalten.

Aufgabe 1

 if (zahl < 0) {
 System.out.print("Zahl ist negativ");
 }else{
 System.out.print("Zahl ist nicht negativ");
 }

Was passiert in diesem Programmausschnitt? Übersetze in Umgangs-
sprache:

__

__

Schreibe ein Programm, das für eine Zahl, die über die Tastatur
eingelesen wird, ausgibt, ob die Zahl negativ oder nicht negativ ist!

 50

Theorie

In Aufgabe 1 hast du die Bedeutung der if-Anweisung herausgefunden.
Trotzdem hier nochmal:
Programmcode Bedeutung

if (x) {
 Anweisung1
}else{
 Anweisung2
}

Falls der Ausdruck x wahr ist
führe Anweisung1 aus
sonst
Anweisung2

Die Regeln, wie man Anweisungen schreiben muss, damit der Computer
sie verstehen kann, nennt man Syntaxregeln. Die richtige Schreibweise
bezeichnet man deshalb auch als die richtige Syntax.

Bei der Syntax der if-Anweisung muss auf einiges genau geachtet
werden:

Aufgabe 2

Schreibe ein Programm für einen Bankautomaten! Der Kunde, der

if (x) {

 Anweisungen1

}else{

 Anweisungen2

}

Schlüsselwörter

Auszuwertender Ausdruck. Muss in
runden Klammern stehen!

Auszuführende
Anweisungen falls x
wahr ist. Müssen in
geschweiften
Klammern stehen!

Auszuführende
Anweisungen falls x
falsch ist.
Müssen in
geschweiften
Klammern stehen!

Der else-Teil kann
auch fehlen !

if (x) {

 Anweisung1

}

Einrücken der
Anweisungen um 2
Leerzeichen.
Nicht verpflichtend.
Aber wichtig für die
Lesbarkeit!

 51

sich gerade am Bankautomat mit seiner PIN legitimiert hat, hat ein
Guthaben von 136.34 €. Das Konto kann nicht überzogen werden.
Schreibe ein Programm, das einließt, wie viel Geld dieser Kunde
abheben möchte, und nur dann Geld ausgibt, wenn dieser Betrag
das Guthaben nicht übersteigt.

Beispiele:
Ihr Guthaben berägt 136.34 Euro.
Wieviel Geld wollen Sie abheben? 200
Keine Auszahlung! Dieser Betrag übersteigt Ihr
Guthaben.

Ihr Guthaben berägt 136.34 Euro.
Wieviel Geld wollen Sie abheben? 100
Es werden 100 Euro ausgezahlt.

Theorie

Da eine If -Anweisung natürlich auch eine Anweisung ist, kannst du If –
Anweisungen auch ineinander schachteln. Du kannst also eine If-
Anweisung auch als Anweisung in eine andere If-Anweisung schreiben.

Das kann zum Beispiel so aussehen:

Dir ist sicherlich schon aufgefallen, dass die Quelltexte in diesem
Leitprogramm auf bestimmte Art und Weise editiert sind. Einrückungen
und Kommentare werden eingesetzt, um die Quelltexte besser lesbar zu
machen. Besonders bei Schachtelungen sollte man darauf achten
Einrückungen zu machen. Eine Einrückung besteht immer aus zwei
Leerzeichen. Nutze nicht die Tabulatortaste!

Schachtelungen werden in Zukunft immer häufiger vorkommen. Das

public class Betrag{
 public static void main (String [] arguments){
 // Bildet den Bertag einer Zahl
 double x, betrag;
 x = Kon.readDouble();
 if (x < 0) { //Wenn x < 0 ist, wird -x in betrag
 //gespeichert
 betrag=-x;
 }else{ //Sonst..
 if (x > 0) { //..ist entweder x > 0,
 betrag=x; //dann wird x in betrag gespeichert
 }else{ //..oder x = 0,
 betrag=0; //dann wird 0 in betrag gespeichet
 }
 }
 System.out.print(betrag);
 }
}

 52

obige Beispiel ist trotz Einrückungen und Kommentaren schon etwas
unübersichtlich. Ohne diese sähe es so aus:

public class Betrag{
public static void main (String [] arguments){
double x, betrag;
x = Kon.readDouble();
if (x < 0) {
betrag=-x;
}else{
if (x > 0) {
betrag=x;
}else{
betrag=0;
}
}
System.out.print(betrag);
}
}

So ist das Programm kaum noch nachzuvollziehen.

Versuche also in Zukunft, deine Quellcodes durch Einrückungen
und Kommentare gut lesbar zu gestalten! Der JavaEditor gibt dabei
eine automatische Hilfestellung. Orientiere dich außerdem an den
Quellcodes im Leitprogramm.

Aufgabe 3

Erweitere dein Programm aus Aufgabe 1 so, dass für die
eingegebene Zahl entschieden wird, ob sie

- negativ,
- gleich Null oder
- positiv ist.

TIPP: Orientiere dich an dem Programm Betrag.java aus dem Theorieteil.

Sorge durch Einrückungen und Kommentare für eine gute
Lesbarkeit deines Programms!

Aufgabe 4

Schreibe ein Programm, das anhand des aktuellen Datums und dem
Geburtsdatum des Benutzer das Alter des Benutzers ausgibt! Wenn
der Benutzer am aktuellen Datum Geburtstag hat, wird zusätzlich eine
Gratulation ausgegeben. Das aktuelle und das Geburtsdatum werden
über die Tastatur während der Ausführung eingelesen.

Sorge durch Einrückungen und Kommentare für eine gute

 53

Lesbarkeit deines Programms!

Beispiel für Programmablauf:
*****Geburtstagsrechner*****
aktuelles Datum
Tag: 13
Monat: 9
Jahr: 2005
Geburtsdatum
Tag: 21
Monat: 9
Jahr: 1981
Du bist 23 Jahre alt.

Theorie

Wir wollen noch eine andere Kontrollstruktur kennenlernen: Die Switch-
Anweisung. Sie ist der if-Anweisung ähnlich.

Programmcode Bedeutung
switch (x){
 case Wert1:{
 Anweisung1
 break;
 }
 case Wert2: {
 Anweisung2
 break;
 }
 ...
 Default : {
 letzteAnweisung
 }
}

Falls x
gleich Wert1 ist,
dann führe Anweisung1 aus.

Falls x gleich Wert2 ist,
dann führe Anweisung2 aus.
usw.

In allen anderen Fällen führe
letzteAnweisung aus.

Die Werte, die jeweils nach case stehen, dürfen nur vom Datentyp int
oder char sein. Außerdem müssen dort direkt Werte eingesetzt werden.
Variablen sind nicht zulässig.

Genau wie bei der Verwendung der if-Anweisungen muss hier ganz
genau auf die Syntax und zur Übersichtlichkeit auf Einrückungen
geachtet werden.

Beispiel zur Verwendung von Switch:

// Je nachdem welche Zahl zwischen 1 und 3 in zahl
// gespeichert ist, wird eine Übersetzung auf Deutsch,
// Englisch und Italienisch ausgegeben.

 switch (zahl) {
 case 1 :{
 System.out.println("1 : Eins, one, uno"); break;
 }
 case 2 :{

 54

 System.out.println("2 : Zwei, two, due"); break;
 }
 case 3 :{
 System.out.println("3 : Drei, three, tre"); break;
 }
 default:{
 System.out.println("Nicht in der Datenbank.");
 }
 }

Aufgabe 5

Schreibe einen "Taschenrechner", der die Funktionen +, -, *, / hat.
Das Programm liest

- zuerst die erste Zahl, dann
- den Operator und dann
- die zweite Zahl ein.

Dann wird das Ergebnis ausgegeben.

Sorge durch Einrückungen und Kommentaren für eine gute
Lesbarkeit deines Programms!

Diese Aufforderung gilt ab jetzt für alle Programmieraufgaben.
Deshalb wird sie ab jetzt nicht mehr wiederholt.

Beispiel für Programmablauf:
Taschenrechner
3
+
2
=
5

Lernkontrolle

Fühlst du dich sicher im Stoff? Dann kannst du bei unserem Tutor den
Kapiteltest machen. Wenn du ihn bestehst, darfst du das nächste Kapitel
bearbeiten.

 55

+

Additum

Schreibe ein Programm für die Funktion, die in der Abbildung
beschrieben ist.

-2 -1 1

1

2

2

x

y

 56

Musterlösungen zu den Aufgaben aus Kapitel 5

Aufgabe 1

 if (zahl < 0) {
 System.out.print("Diese Zahl ist negativ");
 }else{
 System.out.print("Diese Zahl ist nicht negativ");
 }

Was passiert in diesem Programmausschnitt. Übersetze in
Ungangssprache:

Wenn zahl kleiner ist als 0, dann gebe "Die Zahl ist negativ" und sonst "Die

Zahl ist nicht negativ" am Bildschirm aus.

Schreibe ein Programm, das für eine Zahl, die über Tastatur eingelesen
wird, ausgibt, ob die Zahl negativ oder nicht negativ ist.

Aufgabe 2

Schreibe ein Programm für einen Bankautomaten! Der Kunde, der sich
gerade am Bankautomat mit seiner PIN legitimiert hat, hat ein Guthaben von
136.34 €. Das Konto kann nicht überzogen werden. Schreibe ein Programm,
dass einließt, wie viel Geld dieser Kunde abheben möchte, und nur dann
Geld ausgibt, wenn dieser Betrag das Guthaben nicht übersteigt.

public class Bankautomat {
 public static void main (String [] arguments){
 double guthaben, abbuchung;
 guthaben = 136.34;
 System.out.print("Wieviel Geld wollen Sie abheben? ");
 abbuchung = Kon.readDouble(); //einlesen der gewün. Abbuch.
 if (guthaben - abbuchung < 0) { //abbuchung zu hoch
 System.out.print("Keine Auszahlung.“)
 System.out.print("Betrag übersteigt Guthaben. ");
 }else{ //genug Guthaben für Abbuchung
 System.out.print("Es wird ");
 System.out.print(abbuchung);
 System.out.print(" Euro ausgezahlt. ");
 }
 }
}

Aufgabe 3

Erweitere dein Programm aus Aufgabe 1 so, dass für die eingegebene
Zahl entschieden wird, ob sie

- negativ,
- gleich Null oder
- positiv ist.

public class Zahlentest2 {
 public static void main (String [] arguments){

 57

 double zahl;

 System.out.print("Geben sie eine ganze Zahl ein? ");
 zahl = Kon.readDouble(); //Einlesen einer Zahl
 if (zahl < 0) {
 System.out.print("Diese Zahl ist negativ.");
 }else{ //zahl ist nicht negativ
 if (zahl==0){
 System.out.print("Diese Zahl ist gleich 0.");
 }else{
 System.out.print("Diese Zahl ist postitiv.");
 }
 }
 }
}

Aufgabe 4

Schreibe ein Programm, dass anhand des aktuellen Datums und dem
Geburtsdatum des Benutzer das Alter des Benutzers ausgibt! Wenn der
Benutzer am aktuellen Datum Geburtstag hat, wird zusätzlich eine Gratulation
ausgegeben. Das aktuelle und das Geburtsdatum werden über die Tastatur
während der Ausführung eingelesen.

public class Alter {
 public static void main (String [] arguments){
 String name;
 int datJahr, datMonat, datTag;
 int gebJahr, gebMonat, gebTag;
 int alter;

 //Einlesen des aktuellen Datums
 System.out.println("Welches Datum haben wir?");
 System.out.print("Tag : ");
 datTag = Kon.readInt();
 System.out.print("Monat : ");
 datMonat = Kon.readInt();
 System.out.print("Jahr : ");
 datJahr = Kon.readInt();

 //Einlesen des Geburtsdatums
 System.out.println("Wann bist du geboren ?");
 System.out.print("Tag : ");
 gebTag = Kon.readInt();
 System.out.print("Monat : ");
 gebMonat = Kon.readInt();
 System.out.print("Jahr : ");
 gebJahr = Kon.readInt();

 // Um das Alter zu bestimmen, muss man das Geburtsjahr
 // vom aktuellen Jahr
 // abziehen und dann...
 alter = datJahr - gebJahr;

 // ..überprüfen, ob der Benutzer in diesem Jahr
 //schon Geburtstag hatte.
 if (gebMonat < datMonat){ //Geburtstag war schon
 System.out.print("Du bist ");
 System.out.print(alter);

 58

 System.out.print(" Jahre alt.");
 }else{
 if (gebMonat == datMonat){ //Geburtstag in diesem Monat
 if (gebTag < datTag){ //Geburtstag war schon in diesem Monat
 System.out.print("Du bist ");
 System.out.print(alter);
 System.out.print(" Jahre alt.");
 }else{ //Geburtstag kommt noch in diesem Monat
 if (gebTag == datTag){ //Geburtstag heute
 System.out.println("HAPPY BIRTHDAY!!");
 System.out.print("Heute bist du ");
 System.out.print(alter);
 System.out.print(" Jahre alt geworden.");
 }else{ //Geb. später (nicht heute) in diesem Monat
 System.out.print("Du bist ");
 System.out.print(alter-1);
 System.out.print(" Jahre alt.");
 }
 }
 }else{ //Geg. kommt noch in diesem Jahr (nicht in diesem Monat)
 System.out.print("Du bist ");
 System.out.print(alter-1);
 System.out.print(" Jahre alt.");
 }
 }
 }
}

Aufgabe 5

Schreibe einen "Taschen"-rechner, der die Funktionen +, -, *, / hat.
Das Programm liest

- zuerst die erste Zahl, dann
- den Operator und dann
- die zweite Zahl ein.

Dann wird das Ergebnis ausgegeben.

public class Taschenrechner {
 public static void main (String [] arguments){
 double zahl1, zahl2;
 int operator;

 System.out.print("****Taschenrechner****\n");
 zahl1 = Kon.readDouble(); //Der 1. Operand wird eingelesen..
 operator = Kon.readChar(); //Die gew. Operation wird eingelesen..
 switch (operator) {
 case '+' :{ //Operand ist +
 zahl2 = Kon.readDouble(); //Der 2. Operand wird eingelesen
 System.out.println("=");
 System.out.print(zahl1 + zahl2);
 break;
 }
 case '-' :{ //Operand ist -
 zahl2 = Kon.readDouble(); //Der 2. Operand wird eingelesen
 System.out.println("=");
 System.out.print(zahl1 - zahl2);
 break;
 }
 case '*' :{ //Operand ist *
 zahl2 = Kon.readDouble(); //Der 2. Operand wird eingelesen
 System.out.println("=");
 System.out.print(zahl1 * zahl2);

 59

 break;
 }
 case '/' :{ //Operand ist /
 zahl2 = Kon.readDouble(); //Der 2. Operand wird eingelesen
 System.out.println("=");
 System.out.print(zahl1 / zahl2);
 break;
 }
 default: {
 System.out.println("FEHLER");
 }
 }
 }
}

+ Es handelt sich um folgende Funktion:

 x + 2 falls x<-1

f(x)=

1

falls -1 <= x <= 1

 x falls 1 < x

public class Funktion {
 public static void main (String [] arguments){
 int x,y;

 System.out.print("x = ");
 x=Kon.readInt();
 if (x < -1) {
 y=x+2;
 }else{
 if (x <= 1) {
 y=1;
 }else{
 y=x;
 }
 }
 System.out.print("f(x) = ");
 System.out.print(y);
 }
}

 60

 61

Kapitel 6 Schleifen

Übersicht Schleifen sind genau wie Verzweigungen Kontrollstrukturen. Sie

bewirken eine Abweichung von der üblichen Abarbeitung der
Anweisungen. Solange keine Kontrollstrukturen vorkommen, werden die
Anweisungen in einem Pogrammquelltext vom Compiler der Reihe nach
von oben nach unten durchgearbeitet. Du weißt inzwischen, dass die
Kontrollstrukturen if und switch bewirken, dass an einer bestimmten
Stelle im Quelltext eine Auswahl zwischen zwei oder mehreren
abzuarbeitenden Quelltextteilen getroffen wird. Schleifen bewirken
dagegen, dass ein bestimmter Quelltextteil gar nicht, einmal oder
mehrmals wiederholt wird. In diesem Kapitel wollen wir uns mit for-
und while-Schleifen befassen. Bei for-Schleifen handelt es sich um eine
fest vorgegebene Anzahl von Wiederholungen. Bei while-Schleifen
dagegen wird die Anzahl der Wiederholungen von einer Bedingung
abhängig gemacht. Der Quelltext wird solange wiederholt, bis diese
Bedingung verletzt also false ist.

In diesen Kapitel wirst du lernen, wie du die Wiederholung von
Programmteilen mit for- und while-Schleifen programmieren und sinnvoll
in deine Programme einbauen kannst.

Aufgabe 1 – Wie funktioniert eine for-Schleife?

Die folgende Aufgabe ist nicht einfach, wenn du wenige oder keine
Vorkenntnisse im Programmieren hast. Du sollst hier herausfinden wie
for-Schleifen funktionieren. Eine Hilfestellung könnte sein, dass du das
Programm am Computer austestest. Betrachte das folgende Programm:

public class BedeutungForSchleife {
 public static void main (String [] arguments){
 int i;
 for(i=0; i<10; i++){
 System.out.println(i);
 }
 }
}

Übersetze den unterlegten Teil in Umgangssprache!
Tipp: x++ hat die selbe Bedeutung wie x = x+1

 62

Theorie

Wenn du mit Aufgabe 1 Schwierigkeiten hattest, dann hilft dir der
Theorieteil jetzt. Also wie funktioniert eine for-Schleife. Bei der for-
Schleife ist fest vorgegeben, wie oft die Anweisungen in den
geschweiften Klammern ausgeführt werden. Es gibt eine Zählvariable,
die am Anfang auf einen Anfangswert gesetzt wird. Dann wird sie
solange hochgezählt, bis sie nicht mehr kleiner als ein vorgegebener
Endwert ist. Jedes mal wenn die Zählvariable um eins hochgezählt wird,
werden auch die Anweisungen in den geschweiften Klammern
ausgeführt.

Beispiel: Das kleine 1 x 3

public class Einmaldrei {
 public static void main (String [] arguments){
 int i,x;
 x=0;
 for(i=0; i<11; i++){
 System.out.print(i);
 System.out.print(" * 3 = ");
 System.out.println(x);
 x = 3 + x;
 }
 }
}

for(i=anfangswert; i<endwert; i++){

 Anweisungen

}

Die Anweisungen werden so oft ausgeführt, bis i nicht mehr
kleiner als endwert ist. Sie werden also endwert-anfangswert mal
ausgeführt.

Im ersten Schritt ist i
gleich anfangswert.

In jedem Schritt wird i um 1
erhöht und die Anweisungen
in den geschweiften
Klammern werden
ausgeführt.

 63

Für i=0 bis i=10 wird i je um eins erhöht und das Ergebnis von i*3
ausgegeben. i*3 wird allerdings nicht durch Multiplikation berechnet. Das
Ergebnis von i*3 steht in der Variablen x. Das passiert dadurch, dass in
jedem Schritt zu der Variablen x die zahl 3 addiert wird und dieser wert
wiederum in x gespeichert wird. Am anfang ist x durch 0 initialisiert.

Aufgabe 2 – for-Schleife benutzen

Schreibe ein Programm, dass alle Zahlen von 1 bis 100 aufaddiert.
Es soll das Ergebnis jeder Addition ausgegeben werden.

Aufgabe 3 – for-Schleife und if-Anweisung

Schreibe ein Programm, dass für alle Zahlen zwischen 1 und 100
testet, ob sie

(1) durch 3 teilbar sind.
(2) nicht durch 5 aber durch 4 teilbar sind.
(3) Primzahlen sind.

Lasse jeweils die Zahlen, auf die die Bedingungen zutreffen
ausgeben.

Du brauchst:

Mit dem Operator % erhält man den Rest der ganzzahligen
Division.
5 % 3 wird also ausgewertet zu 2.

Tipp zu (3):

Schachtelung von zwei for-Schleifen: Eine Zahl i kann solange als
Primzahl angesehen werden, bis eine Zahl zwischen 2 und i-1
gefunden wird, die i teilt.
boolean-Variable, die false wird, wenn die aktuell untersuchte Zahl
keine Primzahl ist.

Aufgabe 4 – Wie funktioniert eine while-Schleife?

Was passiert in dem folgenden Programm? Bei der Beantwortung
der Frage könnte es helfen, das Programm am Computer
auszutesten. Betrachte das folgende Programm:

public class WhileSchleife{
 public static void main (String [] arguments){
 int x;
 x = 10;
 while (x > 0){
 System.out.println(x);
 x = x-3;

 64

 }
 }
}

Übersetze den unterlegten Teil in Umgangssprache!

Theorie

Jetzt kommt die Theorie zu Aufgabe 4. Wir wollen klären, wie eine
while-Schleife funktioniert.

 Wie oft die Anweisungen wiederholt werden hängt also davon ab, ob die
Bedingung noch erfüllt ist. Damit die Wiederholungen abbrechen, muss
die Bedingung verletzt werden. Folglich muss die Bedingung von den
Anweisungen abhängen.

Beispiel: Das kleine 1 x 4
public class Einmalvier{
 public static void main (String [] arguments){
 int x;
 x=0;
 while (x <= 40){
 System.out.println(x);
 x = x+4;
 }
 }
}

while (Bedingung){
 Anweisungen
}

Solange die Bedingung in den runden Klammern erfüllt ist...

..., werden die Anweisungen in den geschweiften Klammern
ausgeführt.

 65

Zuerst wir x auf 0 gesetzt. Solange x kleiner gleich 40 ist, wird erst x
ausgegeben und dann 4 + x in x gespeichert. Also werden die Zahlen
0, 4, 8,...,40 ausgegeben.

Aufgabe 5 – while-Schleife benutzen

Schreibe die Programme aus Aufgabe 2 und 3 um! Ersetze die for-
Schleifen durch while-Schleifen.

Hinweis:

Benenne die Dateien, in denen die Programmtexte aus Aufgabe 2
und 3 stehen, um, bevor du sie änderst, sodass ihre Quelltexte
erhalten bleiben.

Aufgabe 6 – Kopfrechentrainer

Schreibe einen Kopfrechentrainer für die Addition von ganzen
Zahlen zwischen -99 und 99.
Das Programm soll folgendermaßen ablaufen:

- Der Trainer stellt eine Additionsaufgabe.
- Der Benutzer gibt seine Lösung ein.
- Wenn die Aufgabe richtig gelöst wurde, stellt der Trainer eine

neue Aufgabe.
- Wenn die Aufgabe falsch gelöst ist, gibt der Trainer eine

Fehlermeldung, das richtige Ergebnis und die Anzahl der richtig
gelösten Aufgaben aus und beendet sich.

Du brauchst:

Um zufällige Aufgaben generieren zu können, brauchst du
Zufallszahlen.
Die Datei (Klasse) Zufall.java stellt die Methode

Zufall.getInt();
zur Verfügung. Damit wird eine ganze Zufallszahl zwischen -99
und 99 erzeugt. Stelle also sicher, dass die Klasse Zufall.java im
gleichen Verzeichnis wie dein Programm liegt und compiliert ist.

Lernkontrolle

Für den Kapiteltest solltest du sicher mit for- und while-Schleifen
umgehen können. Auch die if-Anweisung musst du beherrschen. Das
bedeutet, dass du wissen musst, wie die Syntax dieser Kontrollstrukturen
ist und wie man sie anwendet. Wenn du den Kapiteltest bestehst, darfst
du das nächste Kapitel bearbeiten.

 66

+

Additum

Erweitere den Kopfrechentrainer aus Aufgabe 6 um die andern 3
Grundrechenarten. Der Benutzer kann über ein Menue auswählen,
welche Rechenart er üben will.

 67

Musterlösungen zu den Aufgaben aus Kapitel 6

Aufgabe1

for(i=0; i<10; i++){
 System.out.println(i);
}
Übersetze den unterlegten Teil in Umgangssprache!

Von i=0 bis i nicht mehr kleiner als 10 ist, gebe i aus und erhöhe dann i
um 1.

Aufgabe 2

Schreibe ein Programm, dass alle Zahlen von 1 bis 100 aufaddiert. Es soll
das Ergebnis jeder Addition ausgegeben werden.

public class Aufaddieren {
 public static void main (String [] arguments){
 int i,x;
 x=0;
 for(i=0; i<101; i++){
 x = x + i;
 System.out.println(x);
 }
 }
}

Aufgabe 3

Schreibe ein Programm, dass für alle Zahlen zwischen 1 und 100 testet,

- ob sie durch 3 teilbar sind.
- nicht durch 5 aber durch 4 teilbar sind.
- Primzahlen sind.

Lasse jeweils die Zahlen, auf die die Bedingungen zutreffen ausgeben.

public class Zahlen{
 public static void main (String [] arguments){
 int i,j;
 boolean primzahl;

 //Alle Zahlen zwischen 1 und 100, die durch 3 teilbar sind
 System.out.println("\nAlle Zahlen zwischen 1 und 100,..");
 System.out.println("\n\n.. die durch 3 teilbar sind:");
 for (i=1; i<101; i++){
 if (i % 3 == 0){
 System.out.print(i);
 System.out.print(" ");
 }
 }

 //Alle Zahlen zwischen 1 und 100, die nicht durch 5 aber
 //durch 4 teilbar sind
 System.out.println("..die nicht durch 5 aber durch 4 teilbar:");
 for (i=1; i<101; i++){
 if ((i % 5 != 0)&& (i%4==0)){
 System.out.print(i);

 68

 System.out.print(" ");
 }
 }

 //Alle Zahlen Primzahlen zwischen 1 und 100
 System.out.println("\n\n.., die Primzahlen sind:");

 for (i=2; i<101; i++){
 primzahl = true; // i wir als Primzahl angesehen,..
 for (j=2; j<i; j++){
 //..solange keine Zahl zwischen 2 und i-1
 // gefunden wurde, die i teilt.
 if (i % j == 0){
 primzahl = false;
 }
 }
 //Wenn i eine Primzahl ist, dann wird i ausgegeben
 if (primzahl == true){
 System.out.print(i);
 System.out.print(" ");
 }
 }

 }
}

Aufgabe 4

Was passiert in dem folgenden Programm?

 x = 10;
 while (x > 0){
 System.out.println(x);
 x = x-3;
 }

Übersetze in Umgangssprache!

Solange x größer als 0 ist, wird erst x am Bildschim ausgegeben und das
Ergebnis von x-3 in x gespeichert.

Ausgabe:

10
7
4
1

Aufgabe 5
while-Schleife benutzen

Schreibe die Programme aus Aufgabe 2 und 3 um! Ersetze die for-
Schleifen durch while-Schleifen.
public class AufaddierenWhile{
 public static void main (String [] arguments){
 int i,x;
 i=1;
 x=0;

 69

 //i wird von 1 bis 100 hochgezählt
 while (i<=100){
 x = x + i; // aufaddieren der Zahlen von 1 bis 100
 i = i+1;
 System.out.println(x);
 }

 }
}

public class ZahlenWhile{
 public static void main (String [] arguments){
 int i,j;
 boolean primzahl;

 //Alle Zahlen zwischen 1 und 100, die durch 3 teilbar sind
 System.out.println("\nAlle Zahlen zwischen 1 und 100,..");
 System.out.println("\n\n.. die durch 3 teilbar sind:");
 i = 1;
 while (i<=100){
 if (i % 3 == 0){
 System.out.print(i);
 System.out.print(" ");
 }
 i=i+1;
 }

 //Alle Zahlen zwischen 1 und 100, die nicht durch 5 aber
 //durch 4 teilbar sind
 System.out.println("..die nicht durch 5 aber durch 4 teilbar:");
 i = 1;
 while (i<=100){
 if ((i % 5 != 0)&& (i%4==0)){
 System.out.print(i);
 System.out.print(" ");
 }
 i=i+1;
 }

 //Alle Zahlen Primzahlen zwischen 1 und 100
 System.out.println("\n\n.., die Primzahlen sind:");

 i=2;
 while (i<=100){
 j=2;
 primzahl = true; // i wir als Primzahl angesehen,..
 while (j<=i-1){
 //..solange keine Zahl zwischen 2 und i-1 gefunden wurde,
 // die i teilt.
 if (i % j == 0){
 primzahl = false;
 }
 j=j+1;
 }
 //Wenn i eine Primzahl ist, dann wird i ausgegeben
 if (primzahl == true){
 System.out.print(i);
 System.out.print(" ");
 }
 i=i+1;
 }
 }
}

 70

Aufgabe 6
Schreibe einen Kopfrechentrainer für die Addition von ganzen Zahlen
zwischen -99 und 99.

Das Programm soll folgendermaßen ablaufen:
Der Trainer stellt eine Additionsaufgabe.
Der Benutzer gibt seine Lösung ein.
Wenn die Aufgabe richtig gelöst wurde, stellt der Trainer eine neue Aufgabe.
Wenn die Aufgabe falsch gelöst ist, gibt der Trainer eine Fehlermeldung, das
richtige Ergebnis und die Anzahl der richtig gelösten Aufgaben aus und
beendet sich.

public class Kopfrechnen{
 public static void main (String [] arguments){
 boolean fehler;
 int zahl1, zahl2, ergebnis, eingabe, anzahl;

 fehler = false;
 anzahl = 0;

 System.out.println("Kopfrechentrainer : ADDITION\n");
 //Solange der Benutzer keinen Fehler gemacht hat,
 //wird das Programm ausgeführt
 while (fehler == false){
 //Speichern von zwei Zufallszahlen
 zahl1 = Zufall.getInt();
 zahl2 = Zufall.getInt();

 //Aufgabe stellen
 System.out.print("(");
 System.out.print(zahl1);
 System.out.print(") + (");
 System.out.print(zahl2);
 System.out.print(") = ");

 //Lösung des Benutzers einlesen lassen
 eingabe = Kon.readInt();

 //richtige Lösung errechnen
 ergebnis = zahl1 + zahl2;

 //Wenn die Lösung des Benutzers richtig ist, dann
 if (eingabe != ergebnis){
 //Fehlerausgabe und Anzahl der richtigen Lösungen ausgeben
 System.out.print("FALSCH\n Du hast ");
 System.out.print(anzahl);
 System.out.print(" richtige Loesungen erzielt!");
 // In Variable fehler speichern, dass Fehler aufgetreten ist
 fehler = true;
 }
 anzahl = anzahl + 1;
 }

 }
}

 71

+
Erweitere den Kopfrechentrainer aus Aufgabe 6 um die andern 3
Grundrechenarten. Der Benutzer kann über ein wiederkehrendes Menue
auswählen, welche Rechenart er üben will.

public class Kopfrechnenplus{
 public static void main (String [] arguments){
 boolean fehler;
 int zahl1, zahl2, ergebnis, eingabe, ergebnisrest,
 int eingaberest, anzahl;
 char menuepunkt;

 fehler = false;
 anzahl = 0;
 menuepunkt = ' ';

 while (menuepunkt != 'E'){
 System.out.println("\n\n*** Kopfrechentrainer plus ***");
 System.out.println("(A)ddition (S)ubtraktion (M)ultiplikation
(D)ivision (E)nde");
 menuepunkt = Kon.readChar();
 //Solange der Benutzer keinen Fehler gemacht hat,
 //wird das Programm ausgeführt
 switch (menuepunkt){

 //Addition
 case 'A':{
 while (fehler == false){
 //Speichern von zwei Zufallszahlen
 zahl1 = Zufall.getInt();
 zahl2 = Zufall.getInt();

 //Aufgabe stellen
 System.out.print("(");
 System.out.print(zahl1);
 System.out.print(") + (");
 System.out.print(zahl2);
 System.out.print(") = ");

 //Lösung des Benutzers einlesen lassen
 eingabe = Kon.readInt();

 //richtige Lösung errechnen
 ergebnis = zahl1 + zahl2;

 //Wenn die Lösung des Benutzers richtig ist, dann
 if (eingabe != ergebnis){
 //Fehlerausgabe und Anzahl der richtigen Lösungen
 // ausgeben
 System.out.print("FALSCH\n Du hast ");
 System.out.print(anzahl);
 System.out.println(" richtige Loesungen erzielt!");
 // In Variable fehler speichern, dass Fehler
 // aufgetreten ist
 fehler = true;
 }
 anzahl = anzahl + 1;
 }
 fehler = false;
 anzahl = 0;
 break;
 }

 72

 //Subtraktion
 case 'S':{
 (.. analog zur Addition)
 }
 //Multiplikation
 case 'M':{
 (.. analog zur Addition)
 }
 //Division
 case 'D':{
 while (fehler == false){
 //Speichern von zwei Zufallszahlen
 zahl1 = Zufall.getInt();
 zahl2 = Zufall.getInt();

 //Aufgabe stellen
 System.out.print("(");
 System.out.print(zahl1);
 System.out.print(") / (");
 System.out.print(zahl2);
 System.out.print(") = ");

 //Lösung des Benutzers einlesen lassen
 eingabe = Kon.readInt();
 System.out.print("Rest : ");
 eingaberest = Kon.readInt();

 //richtige Lösung errechnen
 ergebnis = zahl1 / zahl2;
 ergebnisrest = zahl1 % zahl2;

 //Wenn die Lösung des Benutzers richtig ist, dann
 if ((eingabe != ergebnis) || (eingaberest != ergebnisrest)){
 //Fehlerausgabe und Anzahl der richtigen
 //Lösungen ausgeben
 System.out.print("FALSCH\n Du hast ");
 System.out.print(anzahl);
 System.out.print(" richtige Loesungen erzielt!");
 // In Variable fehler speichern, dass
 // Fehler aufgetreten ist
 fehler = true;
 }
 anzahl = anzahl + 1;
 }
 fehler = false;
 anzahl = 0;
 break;
 }

 }
 }
 }
}

 73

Kapitel 7 Arrays

Übersicht Ein Array ist eine Datenstruktur. In einer Datenstruktur werden auf eine

bestimmte Art und Weise Daten gespeichert. Die Variablen, die du bisher
kennen gelernt hast, sind also auch Datenstrukturen. In einer Variablen
wurde ein Wert von einem bestimmten Datentyp gespeichert. In einem
Array dagegen werden mehrere Daten vom gleichen Datentyp
gespeichert.
Man kann sich ein Array wie eine Liste vorstellen. In einem Array steht
also eine Information nach der anderen. Deshalb nennt man Arrays auch
Reihungen. Es gibt auch komplexere Arrays: die so genannten zwei-
dimensionalen Arrays. Diese kann man sich am ehesten als Tabellen
vorstellen.

Lernziel

In diesem Kapitel lernst du den Umgang mit normalen und
zweidimensionalen Arrays. Dazu benutzt du die Kontrollstrukturen und
Anweisungen, die du in den vorigen Kapiteln kennen gelernt hast.

Theorie

Du weißt inzwischen schon, dass man in einem Array mehrere Daten vom
gleichen Typ speichern kann. Man kann sich ein Array wie im folgenden
Beispiel vorstellen:

Beispiel:

x ist ein Array für Integerwerte und hat 3 Speicherzellen.
In der Speicherzelle 0 befindet sich eine 12, in der Speicherzelle 1
die Zahl -23 und in der Speicherzelle 2 eine 3.

 x
0 12
1 -23
2 3

Wie realisiert man nun Arrays in einem Programm?

Deklaration eines Arrays
Zunächst muss das Array deklariert werden. In der Deklaration von
Arrays, wird mitgeteilt welcher Variablen das Array zugewiesen werden
soll und von welchem Datentyp die Werte des Arrays sind.

 74

Anlegen eines Arrays
Nach der Deklaration muss das Array angelegt werden. Das bedeutet,
dass Speicherplatz für das Array reserviert werden muss. Damit das
passieren kann, muss bekannt sein wie viele Daten in dem Array abgelegt
werden sollen. Für jeden Wert, der gespeichert werden soll, wird eine
Speicherzelle angelegt. Die Speicherzellen des Arrays werden von 0 an
durchnummeriert.

Nachdem das passiert ist, existiert das Array und ist über den Namen, den
man ihm zugewiesen hat, ansprechbar. Jede Speicherzelle des Arrays ist
bereits mit einem Standardwert belegt worden. Das nennt man
Initialisierung. Ein Array mit dem Datentyp Integer wird mit dem Wert 0
initialisiert.

Speichern und Auslesen bei Arrays
Jede einzelne Speicherzelle kann mit dem Namen des Arrays und der
Nummer der Speicherzelle (hier index) angesprochen werden. Die Werte
für index müssen zwischen 0 und anzahl-1 liegen. anzahl ist die Zahl, die
beim Anlegen des Arrays für die Anzahl der Speicherzellen angegeben
wurde.

name = new Datentyp [anzahl];

int, double, boolean, char oder
String
Muss der selbe Datentyp wie
in der Deklaration von der
Variable name sein.

Anzahl der Speicherzellen,
die in dem Array zur
Verfügung stehen sollen.
Die Speicherzellen des
Arrays werden von 0 bis
anzahl-1 durchnummeriert

Name der Variable, über die
das Array ansprechbar ist.
Muss voher deklariert
worden sein.

new bewirkt das Anlegen des
Arrrays mit dem angegebenen
Namen, dem angebebenen
Datentyp und der angegeben
Anzahl an Speicherplätzen.

Datentyp name[];

int,
double,
boolean,
char,
String

An den eckigen Klammern
wird erkannt, dass es sich
um ein Array handelt.

Name der Variable,
über die das Array
ansprechbar ist.

 75

name[index] kann jetzt wie eine Variable verwendet werden:

Wert wird im Array name an die
Speicherzelle mit der nummer index
gespeichert.

name[index] = Wert;

Der Wert, der im Array name an der
Speicherzelle mit der Nummer index
gespeichert ist, wird mit 2 addiert und
in der Variablen x gespeichert.

x = name[index]+2;

Beispielspielprogramm zu dem Array:

 x
0 12
1 -23
2 3

name[index]

Name des Arrays index
- ist eine ganze Zahl
- 0 ≤ index ≤ anzahl-1
- Nummer der Speicherzelle des Arrays,

die angesprochen werden soll

public class Reihung {
 public static void main (String [] arguments){

 int x[];

 x = new int [3];

 x[0] = 12;
 x[1] = -23;
 x[2] = 3;
 }
}

Deklaration von x als Array mit
integer-Werten

Anlegen des Arrays x als Array
mit 3 integer-Werten.

Belegung des Arrays mit integer-Werten. Die einzelnen Speicher-
zellen des Arrays können über die Indizes 0, 1 und 2 angesprochen
werden.

Programm Reihung

 76

Aufgabe 1 - Arrays deklarieren, anlegen und beschreiben

Programmiere die folgenden Arrays!

 x
0 12
1 11
2 -1

y
0 1.3
1 1.4
2 -12.3
3 2.23

z
0 'a'
1 '#'

 v
0 "Ar"
1 "ra"
2 "y"

Lasse in deinem Programm folgende Werte am Bildschirm ausgeben:

- Inhalt der Speicherzelle 0 von Array x
- Inhalt der Speicherzelle 3 von Array y
- Inhalt der Speicherzelle 1 von Array z
- Inhalt der Speicherzelle 0 von Array v

Aufgabe 2 - Arrays deklarieren, anlegen und beschreiben

Schreibe ein Programm, in dem du je ein Array für zwei
unterschiedliche Datentypen deklarierst, anlegst und mit Werten
füllst.
Die beiden Arrays sollen eine unterschiedliche Anzahl an Speicherzellen
haben.
Der Inhalt jedes Arrays soll am Bildschirm ausgegeben werden.
Formatiere deine Ausgabe wie in dem folgenden Beispiel.

Beispiel: doubleArray ist ein array, dass 3 double-Werte enthält.

doubleArray
0 | 3.1
1 | 12.0
2 | -3.4

Aufgabe 3 – Schleifen und Arrays

Schreibe ein Programm, in dem alle Zahlen von 1 bis 100 in ein
geeignetes Array geschrieben werden. Verwende eine Schleife.

Aufgabe 4 - Notenverwaltung

Schreibe ein Programm zur Verwaltung der Noten einer Schulklasse.
Das Programm hat 4 Funktionen.

(1) Noten der Klausur einlesen lassen, wobei die Klassengröße
interaktiv in Erfahrung gebracht wird.

 77

(2) Notenliste der Klausur ausgeben lassen
(3) Durchschnittsnote der Klasse ermitteln lassen.
(4) Programm beenden.

Die Funktionen werden über ein immer wiederkehrendes Menü
angesteuert (Tipp: switch und while).

Aufgabe 5 – Standardbelegung der Arrays

Im Theorieteil hast du gelernt, dass die Arrays nach dem Anlegen mit

name = new Datentyp [anzahl];

schon mit einem Standardwert initialisiert sind. Beim Datentyp int ist das
die 0.

Finde heraus, welcher Wert je nach Datentyp für die
Standardbelegung gewählt wird! Trage deine Ergebnisse hier ein!

int: 0

double:___

char:___

String:___

 78

Theorie

Die Arrays, die du kennen gelernt hast, sind eindimensionale Arrays.
Jetzt wollen wir zweidimensionale Arrays einsetzen. Zweidimensionale
Arrays sind Tabellen zum Speichern von Werten des gleichen Datentyps.
Schauen wir uns zunächst ein Beispiel an:

Beispiel:

- y ist ein zweidimensionales Array für Integerwerte
- y hat 3 Zeilen und 4 Spalten
- Die Speicherzelle in der Zeile 1 und der Spalte 2 enthält eine 12.

 y
0 1 2 3

0 1 -9 34 -8
1 6 -6 12 0
2 9 89 0 0

Wie realisiert man zweidimensionale Arrays in einem Programm?

Deklaration eines zweidimensionalen Arrays

Anlegen eines zweidimensionalen Arrays

Speichern und Auslesen bei zeidimensionalen Arrays

Jede einzelne Speicherzelle kann mit dem Namen des Arrays, der
Nummer ihrer Spalte und der Nummer ihrer Zeile angesprochen werden.

name[zeile][spalte]

zeile
- ist eine ganze Zahl
- 0 ≤ zeile ≤ spaltenanzahl-1
- Nummer der Zeile des Arrays, die
 angesprochen werden soll.

spalte
- ist eine ganze Zahl
- 0 ≤ spalte ≤ spaltenanzahl-1
- Nummer der Spalte des Arrays,
 die angesprochen werden soll.

name = new Datentyp [zeilenanzahl] [spaltenanzahl];

Anzahl der Spalten, die in dem
Array zur Verfügung stehen
sollen. Die Spalten des Arrays
werden von 0 bis spaltenanzahl-1
durchnummeriert.

Anzahl der Zeilen, die in dem
Array zur Verfügung stehen
sollen. Die Zeilen des Arrays
werden von 0 bis zeilenanzahl-1
durchnummeriert.

Datentyp name [] [];

An den zwei eckigen Klammern wird erkannt, dass es sich um ein
zweidimensionales Array handelt.

 79

Beispiel zu dem oben angegebenen Array:

 y
 0 1 2 3

0 1 -9 34 -8
1 6 -6 12 0
2 9 89 0 0

Programm ZweidimensionalesArray

public class ZweidimensionalesArray{
 public static void main (String [] arguments){

 //Deklaration von y als zweidimensionales
 //int-Array:
 int y[][];

 //Anlegen von y mit 3 Zeilen und 4 Spalten
 y = new int [3][4];

 // Speichern der Werte in Zeile 0
 y[0][0] = 1;
 y[0][1] = -9;
 y[0][2] = 34;
 y[0][3] = -8;

 // Speichern der Werte in Zeile 1
 y[1][0] = 6;
 y[1][1] = -6;
 y[1][2] = 12;
 y[1][3] = 0;

 // Speichern der Werte in Zeile 2
 y[2][0] = 9;
 y[2][1] = 89;
 y[2][2] = 0;
 y[2][3] = 0;
 }
}

 80

Aufgabe 6 - Stundenplanmanager

Schreibe einen Stundenplanmanager! Bearbeite die folgende Schritte
alle im gleichen Programmquellcode der Reihe nach. Gehe immer
erst zum nächsten Schritt über, wenn der aktuelle gemeistert ist.

1. Lege ein zweidimensionales Array an, das sich dazu eignet,
einen Stundenplan zu speichern (z.B. 5 Spalten 6 Zeilen).

2. Programmiere eine entsprechende Ausgabe für den

Stundenplan (also für das in 1 angelegte Array).
Tipp: \t innerhalb eines Strings bewirkt bei der Ausgabe eine
Einrückung wie bei der Nutzung der Tabulatortaste.
Beispiel:

 Aktueller Stundenplan
Mo Di Mi Do Fr

M If M E Ph
M Sp M E Ph
E D Sp M E
E D Sp F E
Ph F K If K
 F If K

3. Erweitere dein Programm um die Möglichkeit Eintragungen in

den Stundenplan vornehmen zu lassen.
Beispiel:

4. Erweitere dein Programm so, dass man die Möglichkeit hat in

einem Menü aus folgenden 3 Punkten auszuwählen:
(1) Stundenplan ausgeben
(2) Stunde eintragen
(3) Programm beenden

Nach Ausführung des entsprechenden Menüpunktes wird zum
Menü zurückgekehrt.
Tipp: switch und while!

 ** Stunden eintragen **
Tage 1=Mo 2=Di 3=Mi 4=Do oder 5=Fr
Stunden 1 – 6
Welche Stunde soll eingetragen werden?
Tag: 2
Stunde: 1
Fach: If

 81

Beispiel:

Lernkontrolle

Um den Kapiteltest zu bestehen, musst du Den Umgang mit ein- und
zweidimensionalen Arrays beherrschen.

+

Additum - Notenverwaltung plus

Erweitere dein Programm aus Aufgabe 4 so, dass die Noten
mehrerer Klausuren eingelesen werden können.
Die Anzahl der Notenlisten, die eingegeben werden sollen, wird vorher
interaktiv erfragt. Es steht die Möglichkeit zur Verfügung, für jeden
Schüler eine Durchschnittsnote seiner bisher erzielten Noten zu ermitteln.

+

Additum - Matrizen

Man kann einzweidimensionales Array auch als Matrix auffassen. Wenn
du nicht weißt, was eine Matrix ist, dann schaue im Internet nach.

(1) Finde im Internet heraus, wie zwei Matrizen multipliziert werden.

(2) Multipliziere!

 ****** Stundenplanmanager ******
(1) Stundenplan ausgeben
(2) Stunde eintragen
(3) Programm beenden
Bitte waehle einen Menuepunkt: 2

** Stunden eintragen **
Tage 1=Mo 2=Di 3=Mi 4=Do oder 5=Fr
Stunden 1 – 6
Welche Stunde soll eingetragen werden?
Tag: 2
Stunde: 1
Fach: If

****** Stundenplanmanager ******
(1) Stundenplan ausgeben
(2) Stunde eintragen
(3) Programm beenden
Bitte waehle einen Menuepunkt: _

 82

(3) Schreibe ein Programm, das

- zwei Matrizen als zweidimensionale Arrays speichert,
- multipliziert und
- das Ergebnis in einem weiteren zweidimensionalen Array
speichert.

(4) Überprüfe deine Lösung aus (2) mit dem Programm.

1 2 3 1 2 3

2 1 2 * 2 1 2 =

3 2 0 3 2 0

 83

Musterlösungen zu den Aufgaben aus Kapitel 7
Aufgabe 1

Programmiere die folgenden Arrays!

 x
0 12
1 11
2 -1

 y
0 1.3
1 1.4
2 -12.3
3 2.23

 z
0 'a'
1 '#'

 v
0 "Ar"
1 "ra"
2 "y"

Lasse in deinem Programm folgende Werte am Bildschirm ausgeben:

- Inhalt der Speicherzelle 0 von Array x
- Inhalt der Speicherzelle 3 von Array y
- Inhalt der Speicherzelle 1 von Array z
- Inhalt der Speicherzelle 0 von Array v

public class mehrereArrays {
 public static void main (String [] arguments){
 // Deklaration der Arrays
 int x[];
 double y[];
 char z[];
 String v[];

 // Anlegen der Arrays
 x = new int [3];
 y = new double [4];
 z = new char [2];
 v = new String [3];

 // Schreiben von Werten in das Array x
 x[0] = 12;
 x[1] = 11;
 x[2] = -1;

 // Schreiben von Werten in das Array y
 y[0] = 1.3;
 y[1] = 1.4;
 y[2] = -12.3;
 y[3] = 2.23;

 // Schreiben von Werten in das Array z
 z[0] = 'a';
 z[1] = '#';

 // Schreiben von Werten in das Array v
 v[0] = "Ar";
 v[1] = "ra";
 v[2] = "y";

 // Ausgabe der verlangten Werte
 System.out.print("x[0] = "); System.out.println(x[0]);
 System.out.print("y[3] = "); System.out.println(y[2]);
 System.out.print("z[1] = "); System.out.println(z[1]);
 System.out.print("v[0] = "); System.out.println(v[0]);

 }
}

 84

Aufgabe 2

Schreibe ein Programm, in dem du je ein Array für zwei unterschiedliche
Datentypen deklarierst, anlegst und beschreibst.
Die beiden Arrays sollen eine unterschiedliche Anzahl an Speicherzellen
haben.
Der Inhalt jedes Arrays soll am Bildschirm ausgegeben werden.

public class Arrays {
 public static void main (String [] arguments){
 // Deklaration der Arrays
 double doubleArray[];
 String stringArray[];

 // Anlegen der Arrays
 doubleArray = new double [3];
 stringArray = new String [4];

 // Schreiben von Werten in das Array doubleArray
 doubleArray[0] = 12.2;
 doubleArray[1] = -12.2;
 doubleArray[2] = 120.0;

 // Schreiben von Werten in das Array StringArray
 stringArray[0] = "Das";
 stringArray[1] = "sind";
 stringArray[2] = "vier";
 stringArray[3] = "Woerter!";

 // Ausgabe der Werte des Arrays stringArray in der
 // verlangten Formatierung
 System.out.println(" | stringArray");
 System.out.println("-------------------------");
 System.out.print("0 | "); System.out.println(stringArray[0]);
 System.out.print("1 | "); System.out.println(stringArray[1]);
 System.out.print("2 | "); System.out.println(stringArray[2]);
 System.out.print("3 | "); System.out.println(stringArray[3]);

 // Ausgabe der Werte des Arrays doubleArray in der
 // verlangten Formatierung
 System.out.println("");
 System.out.println(" | doubleArray");
 System.out.println("-------------------------");
 System.out.print("0 | "); System.out.println(doubleArray[0]);
 System.out.print("1 | "); System.out.println(doubleArray[1]);
 System.out.print("2 | "); System.out.println(doubleArray[2]);

 }
}

Aufgabe 3
Schreibe ein Programm, in dem alle Zahlen von 1 bis 100 in ein
geeignetes Array geschrieben werden. Verwende eine Schleife.

public class Array {
 public static void main (String [] arguments){
 int i;
 int x[];
 x = new int [101];

 for(i=1; i<101; i++){
 x[i] = i;
 }

 85

 }
}

oder
public class Array {
 public static void main (String [] arguments){
 int i;
 int x[];
 x = new int [101];
 i=1;
 while (i<=100) {
 x[i] = i;
 i = i+1;
 }
 }
}

Aufgabe 4
Schreibe ein Programm zur Verwaltung der Noten einer Schulklasse. Das
Programm hat 4 Funktionen.

(1) Noten der Klausur einlesen lassen, wobei die Klassengröße interaktiv in
Erfahrung gebracht wird.

(2) Notenliste der Klausur ausgeben lassen
(3) Durchschnittsnote der Klasse ermitteln lassen.
(4) Programm beenden.

Die Funktionen werden über ein immer wiederkehrendes Menü angesteuert

public class Noten{
 public static void main (String [] arguments){
 // Notenliste (Array)
 double noten[];
 double erg;
 int anzahl, menuepunkt, i;

 //Variable zur Steuerung der Muenueauswahl
 menuepunkt = 0;

 //Anzahl der Schüler. Wird während der Ausführung eingelesen.
 anzahl = 0;

 //anfangs ist unbekannt wieviele Schüler mitgeschrieben haben
 noten = new double [anzahl];

 //Solange nicht "Programm beenden" gewählt wird Menü ausgeben
 while (menuepunkt!= 4) {
 System.out.println("\nNOTENVERWALTUNG GK 11 If ");
 System.out.println("(1) Noten eintagen");
 System.out.println("(2) Notenliste ausgeben");
 System.out.println("(3) Durchschnittsnote Kurs ermitteln");
 System.out.println("(4) Programm beenden");
 System.out.print("Bitte waehle einen Menuepunkt: ");

 //Einlesen der Menuepunktauswahl des Benutzers
 menuepunkt = Kon.readInt();

 //Je nach Menüpunktauswahl werden versch. Aktionen ausgeführt
 switch (menuepunkt){

 // Noten einlesen lassen
 case 1:{
 System.out.println("\nNOTEN EINLESEN");
 // Anzahl der Schüler einlesen lassen
 System.out.print("Anzahl Schueler: ");

 86

 anzahl = Kon.readInt();
 // Notenliste für anzahl Schüler anlegen
 noten = new double [anzahl];
 System.out.println("Schueler / Note ");
 System.out.println("----------------");
 for(i=0; i<anzahl; i++){
 System.out.print(" ");
 System.out.print(i);
 System.out.print(" / ");
 noten[i] = Kon.readInt();
 }
 break;
 }

 // Notenliste ausgeben lassen
 case 2:{
 System.out.println("\nNOTENLISTE");
 System.out.println("Schueler\t| Note ");
 System.out.println("-------------------------------------");
 for(i=0; i<anzahl; i++){
 System.out.print(" ");
 System.out.print(i);
 System.out.print(" \t| ");
 System.out.println(noten[i]);
 }
 break;
 }

 //Durchschnittsnote bestimmen
 case 3:{
 erg = 0;
 for(i=0; i<anzahl; i++){
 erg = erg + noten[i];
 }
 erg = erg/anzahl;
 System.out.print("Durchschnittsnote : ");
 System.out.println(erg);
 break;
 }

 //Programm beenden
 case 4:{
 System.out.println("Programm wird beendet.");
 break;
 }

 //Fehlerhafte Eingabe
 default:{
 System.out.println("Fehlerhafte Eingabe!");
 }
 }

 }

 }
}

Aufgabe 5

Finde heraus, welcher Wert je nach Datentyp für die Standardbelegung
gewählt wird!

int: 0
double: 0.0

 87

char: Leerzeichen
String: null

Anhand diesen Programms lassen sich die Werte, mit denen beim Anlegen der
Arrays initialisiert wird, herausfinden.

public class Standardbelegung {
 public static void main (String [] arguments){
 // Deklaration der Arrays
 int intArray[];
 char charArray[];
 double doubleArray[];
 String stringArray[];

 // Anlegen der Arrays
 intArray = new int [2];
 doubleArray = new double [2];
 charArray = new char [2];
 stringArray = new String [2];

 // Ausgeben der Werte, die standardmäßig beim Anlegen
 // in die Arrays geschrieben werden
 System.out.print("Initialisierung fuer int-Arrays : |");
 System.out.print(intArray[0]);
 System.out.println("|");
 System.out.print("Initialisierung fuer double-Arrays : |");
 System.out.print(doubleArray[0]);
 System.out.println("|");
 System.out.print("Initialisierung fuer char-Arrays : |");
 System.out.print(charArray[0]);
 System.out.println("|");
 System.out.print("Initialisierung fuer string-Arrays : |");
 System.out.print(stringArray[0]);
 System.out.println("|");
 }
}

Aufgabe 6 Schreibe einen Stundenplanmanager! Bearbeite die folgende Schritte alle
im gleichen Programmquellcode der Reihe nach. Gehe immer erst zum
nächsten Schritt über, wenn der aktuelle gemeistert ist.

1. Lege ein zweidimensionales Array an, das sich dazu eignet, einen
Stundenplan zu speichern (z.B. 5 Spalten 6 Zeilen).

 public class Stundenplan{
 public static void main (String [] arguments){
 String plan[][];

 //Stundenplan wird angelegt, Standardwert für
 //jede Stunde ist null
 plan = new String [7][6];
 }
}

2. Programmiere eine entsprechende Ausgabe für den Stundenplan
(also für das in 1 angelegte Array).

public class Stundenplan{
 public static void main (String [] arguments){
 String plan[][];

 88

 int menuepunkt, tag, stunde, i, j;

 //Stundenplan wird angelegt, Standardwert für jede Stunde ist null
 plan = new String [7][6];

 // Ausgeben des Stundenplans
 System.out.println("\n Aktueller Stundenplan ");
 System.out.println("Mo\tDi\tMi\tDo\tFr");
 System.out.println("-------------------------------------");
 for(i=1; i<=6; i++){ //i = Stunde
 for(j=1; j<=5; j++){ //j = Tag
 System.out.print(plan[i][j]);
 System.out.print("\t");
 }
 System.out.println("");
 }
 }
}

3. Erweitere dein Programm um die Möglichkeit Eintragungen in den
Stundenplan vornehmen zu lassen.

public class Stundenplan{
 public static void main (String [] arguments){
 String plan[][];
 int menuepunkt, tag, stunde, i, j;

 //Stundenplan wird angelegt, Standardwert für jede Stunde ist null
 plan = new String [7][6];

 // Ausgeben des Stundenplans
 System.out.println("\n Aktueller Stundenplan ");
 System.out.println("Mo\tDi\tMi\tDo\tFr");
 System.out.println("-------------------------------------");
 for(i=1; i<=6; i++){ //i = Stunde
 for(j=1; j<=5; j++){ //j = Tag
 System.out.print(plan[i][j]);
 System.out.print("\t");
 }
 System.out.println("");
 }

 //Eingeben einer Stunde in den Stundenplan
 System.out.println("\n** Stunde eintragen **");
 System.out.println("Tage 1=Mo 2=Di 3=Mi 4=Do oder 5=Fr");
 System.out.println("Stunden 1 - 6");
 System.out.println("Welche Stunde soll eingetragen werden?");
 System.out.print("Tag: ");
 tag = Kon.readInt();
 System.out.print("Stunde: ");
 stunde = Kon.readInt();
 System.out.println("Fach: ");
 plan[stunde][tag]=Kon.readString();

 }
}

4. Erweitere dein Programm so, dass man die Möglichkeit hat in
einem Menü aus folgenden 3 Punkten auszuwählen:

(1) Stundenplan ausgeben
(2) Stunde eintragen
(3) Programm beenden

Nach Ausführung des entsprechenden Menüpunktes wird zum

 89

Menü zurückgekehrt.

public class Stundenplan{
 public static void main (String [] arguments){
 String plan[][];
 int menuepunkt, tag, stunde, i, j;

 //Stundenplan wird angelegt, Standardwert für jede Stunde ist null
 plan = new String [7][6];

 //Variable zur Steuerung der Muenueauswahl
 menuepunkt = 0;

 //Solange nicht "Programm beenden" gewählt wird Menü ausgeben
 while (menuepunkt!= 3) {
 System.out.println("\n****** Stundenplanmanager *********");
 System.out.println("(1) Stundenplan ansehen");
 System.out.println("(2) Stunde eintragen");
 System.out.println("(3) Programm beenden");
 System.out.print("Bitte waehle einen Menuepunkt: ");

 //Einlesen der Menuepunktauswahl des Benutzers
 menuepunkt = Kon.readInt();

 //Je nach Menüpunktauswahl werden versch. Aktionen ausgeführt
 switch (menuepunkt){
 // Ausgeben des Stundenplans
 case 1:{
 System.out.println("\n Aktueller Stundenplan ");
 System.out.println("Mo\tDi\tMi\tDo\tFr");
 System.out.println("-------------------------------------");
 for(i=1; i<=6; i++){ //i = Stunde
 for(j=1; j<=5; j++){ //j = Tag
 System.out.print(plan[i][j]);
 System.out.print("\t");
 }
 System.out.println("");
 }
 break;
 }

 //Eingeben einer Stunde in den Stundenplan
 case 2:{
 System.out.println("\n** Stunde eintragen **");
 System.out.println("Tage 1=Mo 2=Di 3=Mi 4=Do oder 5=Fr");
 System.out.println("Stunden 1 - 6");
 System.out.println("Welche Stunde eintragen?");
 System.out.print("Tag: ");
 tag = Kon.readInt();
 System.out.print("Stunde: ");
 stunde = Kon.readInt();
 System.out.println("Fach: ");
 plan[stunde][tag]=Kon.readString();
 break;
 }

 //Programm beenden
 case 3:{
 System.out.println("Programm wird beendet.");
 break;
 }

 //Fehlerhafte Eingabe
 default:{
 System.out.println("Fehlerhafte Eingabe!");

 90

 }
 }
 }

 }
}

+ Additum - Notenverwaltung plus

Erweitere dein Programm aus Aufgabe 4 so, dass die Noten mehrerer
Klausuren eingelesen werden können.
Die Anzahl der Notenlisten, die eingegeben werden sollen, wird vorher
interaktiv erfragt. Es steht die Möglichkeit zur Verfügung, für jeden Schüler
eine Durchschnittsnote seiner bisher erzielten Noten zu ermitteln.

public class Notenplus{
 public static void main (String [] arguments){
 // Notenliste (Array)
 double noten[][];
 double erg;
 int schueleranzahl, klausurenanzahl, klausur, schueler,
 int menuepunkt, i;

 //Variable zur Steuerung der Muenueauswahl
 menuepunkt = 0;
 System.out.println("\nNOTENVERWALTUNG GK 11 If ");
 System.out.println("Wie viele Schueler umfasst der Kurs? ");
 schueleranzahl = Kon.readInt();
 System.out.println("Wie viele Klausuren werden geschrieben? ");
 klausurenanzahl = Kon.readInt();

 //Anlegen des Arrays pro Klausur eine Zeile, pro Schüler eine
 //Zeile
 noten = new double [klausurenanzahl][schueleranzahl];

 //Solange nicht "Programm beenden" gewählt wird Menü ausgeben
 while (menuepunkt!= 5){
 System.out.println("\n(1) Noten eintagen");
 System.out.println("(2) Notenliste ausgeben");
 System.out.println("(3) Durchschnittsnote Kurs ermitteln");
 System.out.println("(4) Durchschnittsnote Schueler ermitteln");
 System.out.println("(5) Programm beenden");
 System.out.print("Bitte waehle einen Menuepunkt: ");

 //Einlesen der Menuepunktauswahl des Benutzers
 menuepunkt = Kon.readInt();

 //Je nach Menüpunktauswahl werden versch. Aktionen ausgeführt
 switch (menuepunkt){

 // Noten einlesen lassen für eine bestimmte Klausur
 case 1:{
 System.out.println("\nNOTEN EINLESEN");
 System.out.print("Klausuren : 1 - ");
 System.out.println(klausurenanzahl);
 System.out.print("Schueler : 0 - ");
 System.out.println(schueleranzahl);
 // Anzahl der Schüler einlesen lassen
 System.out.print("Klausurnr. : ");
 klausur = Kon.readInt()-1;
 System.out.println("Schueler / Note ");
 System.out.println("----------------");
 for(i=0; i<schueleranzahl; i++){

 91

 System.out.print(" ");
 System.out.print(i);
 System.out.print(" / ");
 noten[klausur][i] = Kon.readInt();
 }
 break;
 }

 // Notenliste ausgeben lassen für eine bestimmte Klausur
 case 2:{
 System.out.println("\nNOTENLISTE");
 System.out.print("Klausuren : 1 - ");
 System.out.println(klausurenanzahl);
 System.out.print("Schueler : 0 - ");
 System.out.println(schueleranzahl);
 System.out.print("Klausurnr. : ");
 klausur = Kon.readInt()-1;
 System.out.println("Schueler\t| Note ");
 System.out.println("-------------------------------------");
 for(i=0; i<schueleranzahl; i++){
 System.out.print(" ");
 System.out.print(i);
 System.out.print(" \t| ");
 System.out.println(noten[klausur][i]);
 }
 break;
 }

 //Durchschnittsnote Kurs bestimmen für eine bestimmte Klausur
 case 3:{
 System.out.print("Klausuren : 1 - ");
 System.out.println(klausurenanzahl);
 System.out.print("Schueler : 0 - ");
 System.out.println(schueleranzahl);
 System.out.print("Klausurnr. : ");
 klausur = Kon.readInt()-1;
 erg = 0;
 for(i=0; i<schueleranzahl; i++){
 erg = erg + noten[klausur][i];
 }
 erg = erg/schueleranzahl;
 System.out.print("Durchschnittsnote Kurs: ");
 System.out.println(erg);
 break;
 }

 //Durchschnittsnote aller geschrieben Klausuren eines
 //Schuelers bestimmen
 case 4:{
 System.out.print("Klausuren : 1 - ");
 System.out.println(klausurenanzahl);
 System.out.print("Schueler : 0 - ");
 System.out.println(schueleranzahl);
 //Einlesen des gewünschten Schuelers
 System.out.print("Durchschittsnote fuer Schüler : ");
 schueler = Kon.readInt();
 erg = 0;
 //Berechnen der Durchschnittsnote für den schueler
 for(i=0; i<klausurenanzahl; i++){
 erg = erg + noten[i][schueler];
 }
 erg = erg/klausurenanzahl;
 System.out.print("Durchschnittsnote : ");
 System.out.println(erg);
 break;

 92

 }

 //Programm beenden
 case 5:{
 System.out.println("Programm wird beendet.");
 break;
 }

 //Fehlerhafte Eingabe
 default:{
 System.out.println("Fehlerhafte Eingabe!");
 }
 }

 }

 }
}

+ Additum - Matrizen

Man kann einzweidimensionales Array auch als Matrix auffassen. Wenn du
nicht weißt, was eine Matrix ist, dann schaue im Internet nach.

(1) Finde im Internet heraus, wie zwei Matrizen multipliziert werden.

(2) Multipliziere!

(3) Schreibe ein Programm, das

- zwei Matrizen als zweidimensionale Arrays speichert,
- multipliziert und
- das Ergebnis in einem weiteren zweidimensionalen Array
speichert.

public class Matrixmultiplikation {
 public static void main (String [] arguments){
 // Deklaration einer 3 x 3 Matrix
 int i,j,k;
 int x[][];
 int ergebnis[][];

 // Anlegen der Arrays
 x = new int [3][3];
 ergebnis = new int [3][3];

 // Schreiben von Werten in die Matrix x
 x[0][0] = 1;
 x[0][1] = 2;
 x[0][2] = 4;
 x[1][0] = 2;
 x[1][1] = 1;

1 2 4 1 2 4 17 16 8

2 1 2 * 2 1 2 = 10 11 10

3 3 0 3 3 0 9 9 18

 93

 x[1][2] = 2;
 x[2][0] = 3;
 x[2][1] = 3;
 x[2][2] = 0;

 //Ergebnis der Multiplikation bestimmen
 for (i=0; i<3; i++){
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 ergebnis[i][j] = ergebnis[i][j] + x[i][k]*x[k][j];
 }
 }
 }

 //Ergebnis ausgeben
 for (i=0; i<3; i++){
 for (j=0; j<3; j++){
 System.out.print(ergebnis[i][j]);
 System.out.print("\t");
 }
 System.out.print("\n");
 }

 }
}

 94

 95

Anhang A: Kapiteltests

A.1 Kapiteltests für den Tutor zu Kapitel 1

Lernkontrolle für das 1. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel (z.B.
Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor
korrigieren. Wenn du nicht mehr als zwei Fehler machst, dann darfst du
mit dem nächsten Kapitel beginnen.

Wie läuft das Erstellen eines ausführbaren Programms ab? Bringe die
einzelnen Schritte in die richtige Reihenfolge, indem du sie richtig
nummerierst!

Ausführen des Programms

Compilieren des Quellcodes

Starten der Entwicklungsumgebung

Speichern des Quellcodes

Editieren des Quellcodes

 Bilde sinnvolle Paare!

1 Sinn von höheren

Programmiersprachen
A Editieren, Speichern, Compilieren

und Ausführen
2 Übersetzten eines

Quelltextes in einer
höheren
Programmiersprache in
Anweisungen, die der
Computer versteht

B Ein Computer versteht nur sehr
einfache und sehr wenige
Anweisungen. Wenn man mit
diesen wenigen Anweisungen ein
größeres Programm schreiben
müsste, bräuchte man sehr lange
und der Quelltext würde sehr
unübersichtlich werden

3 Quellcode C JAVA
4 Ausführen eines

Programms
D Text in einer höheren

Programmiersprache verfassen
5 eine

Entwicklungsumgebung
E Compilieren eines Quelltextes

6 Was man alles mit einer
Entwicklungsumgebung
machen kann..

F Der Computer tut das, was ihm
durch den Quelltext es Programms
aufgetragen wird.

7

eine höhere
Programmiersprache

G JavaEditor

 Paare:

 96

Musterlösung

Lernkontrolle für das 1. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel (z.B.
Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor korrigieren.
Wenn du nicht mehr als zwei Fehler machst, dann darfst du mit dem
nächsten Kapitel beginnen.

Wie läuft das Erstellen eines ausführbaren Programms ab? Bringe die einzelnen
Schritte in die richtige Reihenfolge, indem du sie richtig nummerierst!

5 Ausführen des Programms
4 Compilieren des Quellcodes
1 Starten der Entwicklungsumgebung
3 Speichern des Quellcodes
2 Editieren des Quellcodes

 Bilde sinnvolle Paare!

1 Sinn von höheren

Programmiersprachen
A Editieren, Speichern, Compilieren und

Ausführen
2 Übersetzten eines

Quelltextes in einer höheren
Programmiersprache in
Anweisungen, die der
Computer versteht

B Ein Computer versteht nur sehr
einfache und sehr wenige
Anweisungen. Wenn man mit diesen
wenigen Anweisungen ein größeres
Programm schreiben müsste, bräuchte
man sehr lange und der Quelltext
würde sehr unübersichtlich werden

3 Quellcode C JAVA
4 Ausführen eines Programms D Text in einer (höheren)

Programmiersprache
5 eine Entwicklungsumgebung E Compilieren eines Quelltextes
6 Was man alles mit einer

Entwicklungsumgebung
machen kann.

F Der Computer tut das, was ihm durch
den Quelltext des Programms
aufgetragen wird.

7

eine höhere
Programmiersprache

G JavaEditor

Paare: (1,B) (2,E) (3,D) (4,F) (5,G) (6,A) (7,C)

 97

A.2 Kapiteltests für den Tutor zu Kapitel 2

Lernkontrolle für das 2. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel (z.B.
Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor
korrigieren. Wenn du nicht mehr als zwei Fehler machst, dann darfst
du mit dem nächsten Kapitel beginnen.

Beantworte folgende Fragen:

Worum handelt es sich bei den angegebenen Quelltextausschnitten?

 int x;
 int y;
 double z ;

a)

static double umfang(double r){
 return r * 2.0 * 3.14159;
 }

b)

 x = 100 + 4 * 3 / 4;
 y = 12345;

c)

 umfang(r);

d)

 //Berechnung des Umfangs

e)

public static void main (String[] arg) {…}

f)

 98

Was ist gemeint? Schreibe deine Antwort in die rechte Spalte!

Dadurch wird dem Computer
angegeben, welche Variablen genutzt
werden sollen und welche Art von
Werten in den Variablen gespeichert
werden sollen.

Sind Behälter für Daten bzw. Werte.

Damit kann häufig genutzter Code
mehrfach verwendet werden.

Das Ausführen des in einer Methode
ausgelagerten Quellcodes, wird durch
dadurch angestoßen.

Dort beginnt der Computer beim
Ausführen des Programms.

Das muss immer nach Anweisungen
und Deklarationen stehen.

Dienen der besseren Lesbarkeit des
Programms

 99

Musterlösung

Lernkontrolle für das 2. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel (z.B.
Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor
korrigieren. Wenn du nicht mehr als zwei Fehler machst, dann darfst
du mit dem nächsten Kapitel beginnen.
Beantworte folgende Fragen:

Worum handelt es sich bei den angegebenen Quelltextausschnitten?

 int x;
 int y;
 double z ;
 a) Deklaration

static double umfang(double r){
 return r * 2.0 * 3.14159;
 }
b) Methode

 x = 100 + 4 * 3 / 4;
 y = 12345;
c) Anweisungen

 umfang(r);
d) Methodenaufruf

 //Berechnung des Umfangs
e) Kommentar

public static void main (String[] arg) {…}

f) Hauptprogramm. Quelltext zwischen den geschweiften Klammern.

 Was ist gemeint? Schreibe deine Antwort in die rechte Spalte!
Dadurch wird dem Computer angegeben,
welche Variablen genutzt werden sollen und
welche Art von Werten in den Variablen
gespeichert werden sollen.

Deklaration

Sind Behälter für Daten bzw. Werte. Variablen
Damit kann häufig genutzter Code mehrfach
verwendet werden.

Methoden

Das Ausführen des in einer Methode
ausgelagerten Quellcodes, wird durch
dadurch angestoßen.

Methodenaufruf

Dort beginnt der Computer beim Ausführen
des Programms.

Hauptprogramm

Das muss immer nach Anweisungen und
Deklarationen stehen.

Semikolon

Dienen der besseren Lesbarkeit des
Programms

Kommentare

 Paare:

 100

A.3 Kapiteltests für den Tutor zu Kapitel 3

Lernkontrolle für das 3. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel
(z.B. Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor
korrigieren. Wenn du nicht mehr als zwei Fehler machst, dann darfst
du mit dem nächsten Kapitel beginnen.

Wie nennt man das wo die Pfeile draufzeigen im Allgemeinen?
Beschrifte!

Welche Datentypen sind hier im Spiel?

__

Fülle die Tabelle aus!

 Ergebnis Ergebnisdatentyp

!((20 + 17) == 40)

((23.0 + 17) != 4.0) && true

10 / 3 + 2.1

true && (2 > 3)

(!(‘a’ == ‘b’)) && (!(!(2==2)))

3 < 4

 101

(‘a’ == ‘a’) && (2 > 3)

(true && (‘x’ == ’x’)) || false

(“ab“+“cd“) == ”abcd“

(6.6 / 3.3) != (2 + 0.2)

(10 / 4 == 1) || (‘a’ == ‘b’)

(13 / 3 – 3) * 1234567891234

‘Q’ != ‘q’

!(“Hallo” == “Hallo”)

(!(‘a’ == ‘a’)) == true

 102

Musterlösung

Lernkontrolle für das 3. Kapitel

Bearbeite die folgenden Aufgaben sorgfältig und ohne Hilfsmittel (z.B.
Theorieteil des Leitprogramms)! Lass Sie von unserem Tutor
korrigieren. Wenn du nicht mehr als zwei Fehler machst, dann darfst
du mit dem nächsten Kapitel beginnen.

Wie nennt man das wo die Pfeile draufzeigen im Allgemeinen? Beschrifte!

Welche Datentypen sind hier im Spiel?

int und boolean

Fülle die Tabelle aus
 Ergebnis Ergebnisdatentyp

!((20 + 17) == 40)

true

boolean

((23.0 + 17) != 4.0) && true

true

boolean

10 / 3 + 2.1

5.1

double

true && (2 > 3)

true

boolean

(!(‘a’ == ‘b’)) && (!(!(2==2)))

true

boolean

(‘a’ == ‘a’) && (2 > 3)

false

boolean

3 < 4

Ausdruck

Operanden Operator

 103

(true && (‘x’ == ’x’)) || false

true

boolean

(“ab“+“cd“) == ”abcd“

true

boolean

(6.6 / 3.3) != (2 + 0.2)

false

boolean

(10 / 4 == 1) || (‘a’ == ‘b’)

false

boolean

(13 / 3 – 3) * 1234567891234

1234567891234

int

‘Q’ != ‘q’

true

boolean

!(“Hallo” == “Hallo”)

false

boolean

(!(‘a’ == ‘a’)) == true

false

boolean

 104

A.4 Kapiteltests für den Tutor zu Kapitel 4

Lernkontolle für das 4. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

 Was macht das Programm?

public class Zinsrechner {

 public static void main (String [] arguments){

 anlagebetrag;

 zins;

 dauer;

 gewinn;

 System.out.println("*****ZINSRECHNER*******");

 System.out.print("Anlagebetrag in Euro: ");

 anlagebetrag =

;

 System.out.print("Zinssatz in %: ");

 zins =

;

 System.out.print("Anlagedauer in Jahren : ");

 dauer =

;
 // Berechnung des Gewinns ohne Zinseszins

 gewinn =

;

 System.out.print("Gewinn: ");

 System.out.print(

);
 System.out.print(" Euro ");
 }
}

 105

 Womit bewirkst du einen Zeilenumbruch innerhalb eines Strings?

Schreibe die Deklaration so kurz wie möglich um!

Zeichne die durch die Anweisungen bewirkten Veränderungen ein:

1

‘a’

“ tra "

3.1

5

x y z merke v
int char String double int

 x = 3 + v;
 y = 'b';
 z = "tri " + z;
 merke = v + 1.4;

x y z merke v

int char String double int

 x = v;
 v = x+1;
 z = z + "trullala"

x y z merke v

int char String double int

 int zahl1;
 char y;
 double zahl2 ;
 int x;
 int ergebnis;
 double z ;
 String Text2 ;
 int zahl3;
 String string;
 double grossezahl;

 106

Musterlösung

Lernkontolle für das 4. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

 Was macht das Programm?

Berechnung der Zinsen bei nach Einlesen von Anlagebetrag,
Zinssatz und Laufzeit.

 Womit bewirkst du einen Zeilenumbruch innerhalb eines Strings? \n

Schreibe die Deklaration so kurz wie möglich um!

Zeichne die durch die Anweisungen bewirkten Veränderungen ein:

1

‘a’

“ tra "

3.1

5

x y z merke v
int char String double int

int zahl1;
char y;
double zahl2 ;
int x;
int ergebnis;
double z ;
String Text2 ;
int zahl3;
String string;
double grossezahl;

 int zahl1, x, ergebnis, zahl3;
 char y;
 double zahl2, z, grossezahl;
 String Text2, string;

public class Zinsen {
 public static void main (String [] arguments){
 String name;
 double anlage, zins, dauer, gewinn ;

 System.out.println("*****ZINSRECHNER*******");
 System.out.print("Anlagebetrag in Euro: ");
 anlage = IO.Eingabe();
 System.out.print("Zinssatz in %: ");
 zins = IO.Eingabe();
 System.out.print("Anlagedauer in Jahren : ");
 dauer = IO.Eingabe();
 gewinn = anlage * zins/100 * dauer;
 System.out.print("Gewinn: ");
 System.out.print(gewinn);
 System.out.print(" Euro ");
 }
}

 107

 x = 3 + v;
 y = 'b';
 z = "tri " + z;
 merke = v + 1.4;

8

’b’

"tri tra"

6.4

5

x y z merke v

int char String double int

 x = v;
 v = x+1;
 z = z + "trullala"

5

‘b’

"tri tra trullala"

6.4

9

x y z merke v
int char String double int

 108

A.5 Kapiteltests für den Tutor zu Kapitel 5

Lernkontolle für das 5. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

public class Termine {
 public static void main (String [] arguments){
 char wochentag;
 System.out.println("******Deine festen Termine*****\n");

System.out.println("(M)ontag,(D)ienstag,(M)ittwoch,(D)onnerstag,

usw.?");
 wochentag = Kon.readChar();
 switch (wochentag) {

 case 'M' :{
 System.out.print("M(o)ntag oder M(i)ittwoch?");
 wochentag = Kon.readChar();
 switch (wochentag) {
 case 'o':{
 System.out.print("15:00 Nachhilfe"); break;
 }
 case 'i':{
 System.out.print("16:30 Schwimmen"); break;
 }
 default:{
 System.out.print("FEHLER 1!");
 }
 }
 break;
 }
...Teile ausgeschnitten...
 case 'F' :{
 System.out.print("17:00 Fussball"); break;
 }

 case 'S' :{
 System.out.print("S(a)mstag oder S(o)nntag?");
 wochentag = Kon.readChar();
 switch (wochentag) {
 case 'a':{
 System.out.print("22:00 PARTY"); break;
 }
 case 'o':{
 System.out.print("bis 15:00 ausschlafen :-)"); break;
 }
 default:{
 System.out.print("FEHLER");
 }
 }
 break;
 }

 default:{
 System.out.println("FEHLER 2!");
 }
 }
 }
}

 109

Beantworte die folgenden Fragen zu dem Programm Termine.

Was macht der Besitzer des Programms freitags?

Was macht er sonntags?

Was passiert, wenn man beim Ablauf des Programms erst ein M und
dann ein x eingibt?

Was passiert, wenn man beim Ablauf des Programms als erstes ein X
eingibt?

Wofür ist der Teil des Quellcodes, der fehlt zuständig?

Hätte man dieses Programm auch mit if-Anweisungen schreiben können?

 Bitte wenden!!

Name:

 110

Schreibe ein Programm für die Außentemperaturanzeige im Auto mit
Hilfe der If-Anweisung. Wenn die Temperatur unter 0 Grad fällt, dann
wird zusätzlich zur Temperaturangabe eine Warnung vor Glätte
ausgegeben. Nehme dazu an, dass in der Variable temperatur bereits die
aktuelle Temperatur gespeichert ist.

public class Temperaturanzeige{
 public static void main (String [] arguments){
 // Temperaturanzeige mit Glättewarnung
 double temperatur; //aktuelle Temperatur

 }
}

 111

Musterlösung

Lernkontolle für das 5. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

Beantworte die folgenden Fragen zu dem Programm Termine.

Was macht der Besitzer des Programms freitags?

17:00 Fußballspielen

Was macht er sonntags?

bis 15:00 ausschlafen :-)

Was passiert, wenn man beim Ablauf des Programms erst ein M und
dann ein x eingibt?

Es wird FEHLER 1 ausgegeben.

Was passiert, wenn man beim Ablauf des Programms als erstes ein X
eingibt?

Es wird FEHLER 2 ausgegeben.

Wofür ist der Teil des Quellcodes, der fehlt zuständig?

Gibt die Termine für Donnerstag und Freitag aus.

Hätte man dieses Programm auch mit if-Anweisungen schreiben
können?

Ja.

 112

 Schreibe ein Programm für die Außentemperaturanzeige im Auto
mit Hilfe der If-Anweisung. Wenn die Temperatur unter 0 Grad fällt,
dann wird zusätzlich zur Temperaturangabe eine Warnung vor
Glätte ausgegeben. Nehme dazu an, dass in der Variable
temperatur bereits die aktuelle Temperatur gespeichert ist.

public class Temperaturanzeige{
 public static void main (String [] arguments){
 // Temperaturanzeige mit Glättewarnung
 double temperatur; //aktuelle Temperatur
 temperatur = -5;
 if (temperatur < 0){
 System.out.print(temperatur);
 System.out.print("Grad Celsiua: Glaettegefahr!");
 }else{
 System.out.print(temperatur);
 System.out.print("° c");
 }
 }
}

 113

A.6 Kapiteltests für den Tutor zu Kapitel 6

Lernkontolle für das 6. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

Schreibe zwei Programme zum Potenzieren von ganzen Zahlen.
Die Programme berechnen

ab

und speichern das Ergebnis in
ergebnis.

1. Verwende eine for-Schleife.

public class HochFor {
 public static void main (String [] arguments){
 int a, b, i, ergebnis;
 ergebnis = 1;
 a = Kon.readInt();
 System.out.println("hoch");
 b = Kon.readInt();
 System.out.println("=");

 System.out.println(ergebnis);
 }
}

 114

2. Verwende eine while-Schleife
public class HochWhile {
 public static void main (String [] arguments){
 int a, b, i, ergebnis;
 ergebnis = 1;
 a = Kon.readInt();
 System.out.println("hoch");
 b = Kon.readInt();
 System.out.println("=");

 System.out.println(ergebnis);
 }
}

Bitte wenden!

Name:

 115

Aufgabe 2
Was geben die folgenden Programmteile aus?

 i = 1;
 while (i<=20){
 if (i % 4 == 0){
 System.out.print(i);
 System.out.print(" ");
 }
 i=i+1;
 }

Ausgabe:

 for (i=20; i<50; i++){
 if ((i % 9 == 0)||(i>45)){
 System.out.print(i);
 System.out.print(" ");
 }
 }

Ausgabe:

Ausgabe:

 for (i=1; i<=5; i++){
 for (j=1; j<=i; j++){
 System.out.print(j);
 System.out.print(" ");
 }
 System.out.println("");
 }

 116

Musterlösung

Aufgabe 1

Lernkontolle für das 6. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

Schreibe zwei Programme zum Potenzieren von ganzen Zahlen.
Die Programme berechnen

ab

und speichern das Ergebnis in
ergebnis.

1. Verwende eine for-Schleife.
public class HochFor {
 public static void main (String [] arguments){
 int a, b, i, ergebnis;
 ergebnis = 1;
 a = Kon.readInt();
 System.out.println("hoch");
 b = Kon.readInt();
 System.out.println("=");

 for (i=1; i<=b; i++){
 ergebnis = ergebnis * a;
 }

 System.out.println(ergebnis);
 }
}

2. Verwende eine while-Schleife
public class HochWhile {
 public static void main (String [] arguments){
 int a, b, i, ergebnis;
 ergebnis = 1;
 a = Kon.readInt();
 System.out.println("hoch");
 b = Kon.readInt();
 System.out.println("=");

 i=1;
 while (i<=b){
 ergebnis = ergebnis * a;
 i = i+1;
 }

 System.out.println(ergebnis);
 }
}

 117

Aufgabe 2

Was geben die folgenden Programmteile aus?

 i = 1;
 while (i<=20){
 if (i % 4 == 0){
 System.out.print(i);
 System.out.print(" ");
 }
 i=i+1;
 }

Ausgabe:

48 12 16 20

 for (i=20; i<50; i++){
 if ((i % 9 == 0)||(i>45)){
 System.out.print(i);
 System.out.print(" ");
 }
 }

Ausgabe:

27 36 45 46 47 48 49

Ausgabe:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

 for (i=1; i<=5; i++){
 for (j=1; j<=i; j++){
 System.out.print(j);
 System.out.print(" ");
 }
 System.out.println("");
 }

 118

A.7 Kapiteltests für den Tutor zu Kapitel 7

Lernkontolle für das 7. Kapitel

Du hast bestanden, wenn du nicht mehr als zwei Fehler machst.

Erzeuge diese Arrays und ergänze die Kästen im Quellcode:
 y
 x 0 1

0 3.14 0 '*' '-'
1 -1.0 1 '-' '*'
2 2.7 2 '+' '-'

public class mehrereArrays {
 public static void main (String [] arguments){
 int i,j;

 // Deklaration der Arrays
 double x[];
 char y[][];

 // Anlegen der Arrays

 // Schreiben von Werten in das Array x

 119

 // Schreiben von Werten in das Array y

 //Ausgabe des Arrays x mit einer for-Schleife
 System.out.println("x");

 //Ausgabe des Arrays y mit zwei for-Schleifen
 System.out.println("y");

 }
}

 120

Name:

 121

Musterlösung

Erzeuge diese Arrays:

 y
 x 0 1

0 3.14 0 '*' '-'
1 -1.0 1 '-' '*'
2 2.7 2 '+' '-'

public class mehrereArrays {
 public static void main (String [] arguments){

 int i,j;

 // Deklaration der Arrays
 double x[];
 char y[][];

 // Anlegen der Arrays
 x = new double [3];
 y = new char [3][2];

 // Schreiben von Werten in das Array x
 x[0] = 3.14;
 x[1] = -1.0;
 x[2] = 2.7;

 // Schreiben von Werten in das Array y
 y[0][0] = '*';
 y[0][1] = '-';

 y[1][0] = '-';
 y[1][1] = '*';

 y[2][0] = '+';
 y[2][1] = '-';

 //Ausgabe des Arrays x
 System.out.println("x");
 for (i=0; i<3; i++){
 System.out.println(x[i]);
 }

 //Ausgabe des Arrays y
 System.out.println("y");
 for (i=0; i<3; i++){
 for(j=0; j<2; j++){
 System.out.print(y[i][j]);
 System.out.print("\t");
 }
 System.out.println("");
 }

 122

Anhang B: Mediothek

Für das Erstellen und Testen der Programme und die Arbeit mit dem Internet stehen
Arbeitsplätze mit Rechnern zur Verfügung. Je nach Angebot kann alleine oder zu
zweit gearbeitet werden.

Verwendete Programmiersprache: Java
Entwicklungsumgebung: JavaEditor (Freeware)
Browser: Firefox

Anhang C: Material

Für jeden Schüler steht ein Arbeitsplatz mit einem Rechner, auf dem die in der
Mediothek angegebenen Anwendungen installiert sind, zur Verfügung. Der Schüler
nutzt den Rechner alleine oder, falls das nicht möglich ist, zusammen mit einem
Partner.
Bei den Anwendungen handelt es sich ausschließlich um frei verfügbare Software. Sie
lassen sich unter auf den folgenden Internetseiten herunterladen:

Java 2 Platform, Standard Edition, v 1.4.2 (J2SE):

http://java.sun.com/j2se/1.4.2/download.html

JavaEditor:

http://www.bildung.hessen.de/abereich/inform/skii/material/java/installation.htm

Firefox 1.0.7 for Windows:

http://www.mozilla.org/

Anhang D: Literaturangabe

Mössenböck H.: Sprechen Sie Java? Eine Einführung in das systematische
Programmieren. 3. Auflage, dpunkt.verlag, 2005.

Bishop J.: Java lernen. 2.Auflage, Addison-Wesley, 2001.

Barnes D., Kölling M.: Objektorientierte Programmierung mit Java, Pearson Studium,
2003.

Mössenböck H.: .Grundlagen der Programmierung WS 2003/2004 an der Johannes
Kepler Universität Linz.

Lichter H.: Vorlesung Programmierung WS 2000/2001 an der RWTH-Aachen.

Giesel J.: Vorlesung Programmierung WS 2001/2002 an der RWTH-Aachen.

